

भारत का संविधान उद्देशिका

हम, भारत के लोग, भारत को एक संपूर्ण प्रभुत्व-संपन्न, समाजवादी, पंथ-निरपेक्ष, लोकतंत्रात्मक गणराज्य बनाने के लिए तथा उसके समस्त नागरिकों को:

4、自己的人的人的人的

सामाजिक, आर्थिक और राजनैतिक न्याय, विचार, अभिव्यक्ति, विश्वास, धर्म और उपासना को स्वतंत्रता, प्रतिष्ठा और अवसर की समता प्राप्त कराने के लिए, तथा उन सब में व्यक्ति की गरिमा और राष्ट्र की एकता और अखंडता

दृढ़संकल्प होकर अपनी इस संविधान सभा में आज तारीख 26 नवंबर, 1949 ई. (मिति मार्गशीर्ष शुक्ला सप्तमी, संवत् दो हजार छह विक्रमी) को एतद्द्वारा इस संविधान को अंगीकृत, अधिनियमित और आत्मार्पित करते हैं।

सुनिश्चित करने वाली बंधुता बढ़ाने के लिए

विद्युत वाहिनी तृतीय अंक (जल-विद्युत विशेषांक) केन्द्रीय विद्युत प्राधिकरण अप्रैल 2023 संरक्षक की ओर से

सम्मानित पाठकों,

ऊर्जा सुरक्षा की दृष्टि से तथा प्रगति को गित देने के लिए, ऊर्जा का सहज रूप में बिना बाधा के उपलब्ध कराना हमारा कर्तव्य है तथा इस ओर हमें हर संभव प्रयास करने की आवश्यकता है। ऊर्जा के महत्वपूर्ण प्रकारों में से एक "पन बिजली" की उपयोगिता सर्व सिद्ध है। इस तथ्य को दृष्टिगत रखते हुए "विद्युत् वाहिनी त्रैमासिक पत्रिका" का यह अंक जल-विद्युत् विशेषांक के रूप में पाठकों के समक्ष प्रस्तुत है।

जल ही जीवन है- यह जीवन का आधारभूत सिद्धान्त आज भी उतना ही महत्व रखता है जितना प्राचीनकाल में रखता था। जलीय ऊर्जा के बिना आज का आधुनिक जीवन जीना असंभव सा लगता है। कुछ समय के लिए विद्युत अनुपलब्धता पर भी हम स्वयं को बहुत ही असहज और असहाय महसूस करते है। इसलिए जल विद्युत ऊर्जा की वैज्ञानिकों द्वारा की गई परिकल्पना अब हमारे जीवन का आधार स्तंभ है। यह एक ऐसी ऊर्जा है जो कभी भी इस पृथ्वी से समाप्त नहीं होगी। अर्थात हमारे जीवन के पंच मूल तत्वों - पृथ्वी, आकाश, वायु, जल और अग्नि में से एक है और तकनीकी युग में इसका नामकरण जल- विद्युत के रूप में कर दिया गया है।

सभी प्रकार की तात्विक आधार की ऊर्जा को हम नवीकरणीय और गैर-नवीकरणीय श्रेणी में वर्गीकृत करते हैं और फिर चर्चा कर दोनों श्रेणी की ऊर्जा के उत्पादन व उपयोग की उचित मात्रा निर्धारित करते हैं। परन्तु, नवीकरणीय श्रेणी में प्रथम स्थान पर आने वाला यह बहता हुआ जल सदैव से मनुष्य के जीवन में आकर्षण का केन्द्र बिन्दु रहा है। जल मानव की प्यास बुझाने और दिन-प्रतिदिन के कार्यों में उपयोग के अतिरिक्त पनबिजली के उत्पादन में भी उतना ही महत्वपूर्ण कारक है। भारत की कुल स्थापित विद्युत ऊर्जा उत्पादन क्षमता (MW) का लगभग 11.5% भाग जल-विद्युत ऊर्जा से ही प्राप्त होता है। इस पर मैं देश के अभियंताओं का अभिवादन करते हुए यही बताना चाहता हूँ कि आपके अथक परिश्रम ने असाध्य परिस्थितियों पर अत्याधुनिक तकनीकों के उपयोग से विजय पाकर जल-बांधों के निर्माण को देखकर हर देशवासी का आपके समक्ष नतमस्तक होना कोई अचरज नहीं है। इस चुनौती भरे गौरवशाली कार्य में हजारों श्रमिकों का परिश्रम भी काबिल-ए-तारीफ है।

इसी कड़ी में 'विद्युत वाहिनी पत्रिका' का यह अंक "जल-विद्युत ऊर्जा" को समर्पित है जिसमें संकलित समयपिरक लेखों के माध्यम से आम जन को ''जल-विद्युत ऊर्जा'' के विभिन्न पहलुओं व आयामों से अवगत कराने व जागरूक बनाने का प्रयास किया गया है।

शुभकामनाओं सहित,

आपका,

(घनश्याम प्रसाद)

अध्यक्ष, के. वि. प्रा.

मुख्य संपादक की कलम से

आदरणीय पाठकगण,

आज के आधुनिक जीवन में विद्युत ऊर्जा के महत्व को नकारा नहीं जा सकता है और जिलाय ऊर्जा में नवीकरणीय ऊर्जा स्रोत होने के कारण विद्युत ऊर्जा के पारम्परिक स्रोतों और कोयला, गैस जैसे जीवाश्म ऊर्जा स्रोतों की तुलना में जिलीय ऊर्जा का महत्व सबसे अधिक है। इसी को ध्यान में रखते हुए विद्युत वाहिनी का यह तृतीय विशेषांक जल विद्युत ऊर्जा को समर्पित किया गया है। गत दो अंकों में पाठकों का प्रत्युत्तर सकारात्मक रहा है, इससे हमें प्रेरणा मिलती है कि हम कदम-कदम पर और सुधार करते रहें। इसी को ध्यान में रखते हुए हमनें जल विद्युत के चुने हुए लेखों का संकलन यहाँ प्रस्तुत किया है। आशा है आपको यह अंक रूचिप्रद और ज्ञानवर्धक लगेगा।

हमारे देश में निदयों, पहाड़ों और प्राकृतिक संसाधनों की प्रचुरता के कारण जल विद्युत के उत्पादन को बढ़ाकर अधिकतम किए जाने के आयाम बहुत है और निरन्तर प्रगित करते हुए हमें पूर्ण विश्वास है कि हम शीघ्र ही अधिकांशतः रूप से कुल विद्युत ऊर्जा की कुल खपत में जल विद्युत ऊर्जा की खपत का भाग अधिकतम कर पाएंगे। जल-विद्युत के संयन्त्र को प्रारम्भिक तौर पर संस्थापित करना बहुत ही चुनौती भरा कार्य है, परन्तु एक बार जल विद्युत संयन्त्र स्थापित हो जाएं और बांधों का निर्माण कर लिया जाए तो आगामी समय में इस पर नाम मात्र की लागत आएगी और बिजली न्यूनतम दरों पर उपलब्ध हो पाएगी, जिससे आम जन का जीवन स्तर सुधरेगा।

अतः भारत भविष्य जल विद्युत ऊर्जा की उत्पादन क्षमता में वृद्धि करने के लिए प्रयासरत है। इन्हीं शब्दों के साथ विद्युत वाहनी के द्वितीय अंक के सफल संपादन व लेखकों की सुरूचिपूर्ण रचनाओं पर आभार प्रकट करते हुए, विद्युत वाहिनी का यह तृतीय अंक मैं आपको सौंपता हूँ और आशा करता हूँ कि यह अंक भी आपको पसंद आएगा। आपके बह्मूल्य सुझावों की हमें प्रतीक्षा रहेगी।

सादर।

आपका,

(अशोक कुमार राजपूत)

सदस्य (विद्युत प्रणाली), के.वि.प्रा.

संपादक मंडल

संरक्षक

श्री घनश्याम प्रसाद अध्यक्ष के.वि.प्रा.

मुख्य संपादक

श्री अशोक कुमार राजपूत सदस्य (विद्युत प्रणाली) के.वि.प्रा.

संपादक

श्री सुरता राम, मुख्य अभियंता (आरटी & आई) के.वि.प्रा.

उप संपादक

श्री सौमित्र मजूमदार निदेशक (आईटी व सीएस) के.वि.पा.

श्री जितेन्द्र कुमार मीणा निदेशक (आईआरपी) के.वि.पा.

सहायक संपादक

सुश्री अर्पिता उपाध्याय, उप निदेशक (एचपीपीआई) के.वि.प्रा.

श्री प्रतीक श्रीवास्तव सहा. निदेशक-। (पीसीडी) के.वि.प्रा.

सुश्री ऊषा वर्मा सहा. निदेशक (राजभाषा) के.वि.प्रा.

श्री प्रमोद कुमार जायसवाल

परामर्शदाता (राजभाषा)

के.वि.प्रा.

सहयोगी स्टाफ

श्री विकास कुमार आशुलिपिक (राजभाषा) के.वि.प्रा.

पत्राचार का पता: राजभाषा प्रभाग, एनआरपीसी काम्प्लेक्स, 18-A, शहीद जीत सिंह मार्ग, कटवारिया सराय, नई

दिल्ली - 110016। दूरभाष: 011-26510183, ई-मेल: vidyutvahini-cea@gov.in

मुख्यालय: केंद्रीय विद्युत प्राधिकरण, सेवा भवन, आरके पुरम सेक्टर-1, नई दिल्ली - 110066

	जनुप्रत्ना <u>ण</u> या	
क्रम सं.	लेख	पृष्ठ सं.
1.	हाइड्रो टर्बाइन के जलमग्न घटकों का क्षरण - <i>पंकज कुमार गुप्ता, निदेशक</i>	7-11
2.	गांधी सागर जल विद्युत स्टेशन (5x23 मेगावाट), मध्य प्रदेश में नवीनीकरण एवं आधुनिकीरण के प्रस्ताव संबंधित मामले का अध्ययन - राकेश कुमार, मुख्य अभियंता	12-16
3.	जल विद्युत गृहों के निष्पादन का पुनर्विलोकन <i>- राहुल सिंह, उप-निदेशक</i>	16-18
4.	भारत में जल विद्युत् परियोजनाओं के जलाशयों पर तैरती (फ्लोटिंग) सौर ऊर्जा का विकास - अर्पिता उपाध्याय, उप-निदेशक	18-20
5.	भारत का हरित भविष्य <i>- आलोक कुमार, उप-निदेशक</i>	21-22
6.	ऊर्जा भंडारण प्रणाली <i>- मुकेश कुमार, उप निदेशक</i>	22-26
7.	बांध सुरक्षा अधिनियम, 2021 का सिंहावलोकन - सरबजीत सिंह बख्शी, निदेशक, बांध सुरक्षा निगरानी निदेशालय, केंद्रीय जल आयोग, नई दिल्ली	26-36
8.	जल विद्युत् ऊर्जा - लम्बा सफ़र और चुनौतियाँ <i>- अनिल कवरानी, निदेशक</i>	36-38
9.	भारत में जलविद्युत क्षेत्र की प्रगति हेतु भारत सरकार द्वारा प्रारंभ किए गए नीतिगत स्तर के विभिन्न परिवर्तन - श्रवण कुमार, मुख्य अभियंता, राजीव वार्ष्णय, निदेशक, आशीष कुमार लोहिया, उपनिदेशक	38-41
10.	बुनियादी ढांचे को सक्षम बनाने हेतु लागत के लिए सैद्धांतिक अनुमोदन और बजटीय सहायता जारी करने वास्ते आवेदनों की जांच के लिए मानक संचालन प्रक्रिया (एसओपी) - श्रवण कुमार, मुख्य अभियंता, राकेश कुमार, उप निदेशक	41-43
11.	मैं "गंगा" - अल्पना श्रीवास्तव, आशुलिपिक	44-47
12.	भारतीय ग्रिड का अपने पड़ोसी देशों के साथ विद्युतीय इंटरकनेक्शन - श्री राजेश कुमार, विरष्ठमहाप्रबंधक, श्री मनीष रंजन केशरी, प्रबंधक; श्री श्याम सुंदर गोयल, प्रबंधक; श्री अनुपम कुमार, प्रबंधक; श्री अभिलाष ठाकुर, अभियंता; श्री अमित कुमार, अभियंता - सी.टी.यू.	47-49
13.	केन्द्रीय विद्युत प्राधिकरण के समाचार एवं उपलब्धियाँ	49-52
14.	फोटोफीचर	52-60
		

सूचना और विशेष अन्रोध

के.वि.प्रा. की आंतरिक पत्रिका "विद्युत वाहिनी" का तिमाही आधार पर हिंदी भाषा में प्रकाशन किया जाता है। अतः आपसे अनुरोध है कि 'विद्युत क्षेत्र' से संबंधित अपने स्वरचित लेख हिन्दी भाषा में राजभाषा अनुभाग (के.वि.प्रा.) को संपादन योग्य रूप (in editable form) में ई-मेलः vidyutvahini-cea@gov.in, rajbhashacea@gmail.com पर उपलब्ध कराएं, ताकि इन्हें "विद्युत वाहिनी" पत्रिका में प्रकाशित किया जा सके। लेख में आलेख / तस्वीरों सहित, यदि कोई हो, लगभग 1000-1500 शब्द हो सकते हैं।

प्रकाशित लेख / कविता आदि के लिए निम्न मानदेय प्रस्तावित हैं:-

तकनीकी लेख/निबंध	रु. 3000/- तक
गैर-तकनीकी लेख/कविता	रु. 1500/- तक

तकनीकी पत्रों के अतिरिक्त विद्युत एवं पर्यावरण विषयक हिन्दी भाषा में सामान्य लेख/कविताएँ भी आमंत्रित हैं। केवल सीईए के कर्मचारी ही पत्रिका में प्रकाशन के लिए अपने स्वलिखित निबंध/लेख/कविता भेजने के पात्र हैं। सीईए के बाहर के व्यक्तियों से भी लेख आदि का स्वागत किया जाता है, हालांकि वे मानदेय के पात्र नहीं हैं।

पत्रिका के प्रत्येक संस्करण के लिए प्रत्येक व्यक्ति से केवल एक लेख/निबंध/कविता स्वीकार की जाएगी। निर्धारित समय के भीतर प्राप्त लेख/निबंध/कविताएँ संपादकीय बोर्ड के अनुमोदन के बाद ही प्रकाशन के लिए विचार किया जाएगा। प्रकाशन एवं मानदेय के संबंध में संपादक मंडल का निर्णय अंतिम होगा।

CEA is publishing its in-house magazine titled "Vidyut Vahini" in Hindi language on a quarterly basis. It is, therefore, requested to send your self-written papers in Hindi language pertaining to the 'Power Sector' to Rajbhasha Section of CEA in editable form at vidyutvahini-cea@gov.in, rajbhashacea@gmail.com. The paper may contain about 1000-1500 words, alongwith the diagrams/photographs, if any.

The published articles/poems etc shall be eligible for the following honorarium: -

Technical Papers	Up to Rs 3000/-
Non-Technical Papers/Poems	Up to Rs 1500/-

In addition to technical papers, general articles/poems in the Hindi language having the theme of electricity and environment are also invited. Only the employees of CEA are eligible to send their self-written essays/ articles/ poems for publication in the magazine.

Articles etc are also welcome from the persons outside CEA, however they are not eligible for honorarium.

Only one article/essasy/poems shall be accepted from each person for each edition of the magazine. The article/essays/poems received within the stipulated time shall be considered for publication only after the approval of the editorial board. The decision of the editorial board regarding publication and honorarium shall be final.

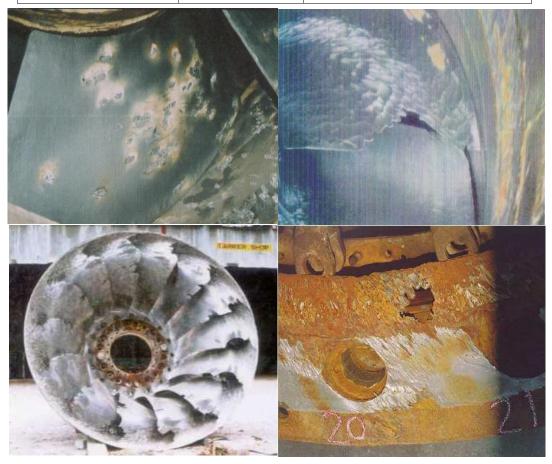
हाइड्डो टर्बाइन के जलमग्न घटकों का क्षरण

पंकज कुमार गुप्ता, निदेशक, रीतेश तिवारी, उपनिदेशक, (एच ई टी डी प्रभाग)

1. जलमग्न घटकों पर गाद (silt) तथा गुहिकायन (cavity) क्षरण का प्रभाव

रनर, गाइड वेन, टर्बाइन टॉप कवर और बॉटम रिंग के सरफेस लाइनर और लेबिरिंथ सीलिंग रिंग आदि फ्रांसिस टर्बाइन के म्ख्य जलमग्न घटक होते हैं, जबिक पेल्टन टर्बाइन के क्षरण की संभावना वाले म्ख्य भाग स्ई, नोजल और बकेट होते हैं। इनकी क्षति क्षरण के रूप में होती है। इन जलमग्न घटकों की धात् का क्षरण जल में उपस्थित गाद कणों के टर्बाइन के घटकों की सतह से टकराने तथा उनके आसपास घूमने के कारण होता है। यह क्षरण कणों और प्रभावित भागों के कठोरता के अन्पात, माइक्रोस्ट्रक्चर, संघात कोण, कणों की गतिज ऊर्जा और घटक की सतह पर जल प्रवाह की स्थितियों से नियंत्रित होती है। कणों की गतिज ऊर्जा ग्रुत्वाकर्षण, वेग, जड़ता और उग्रता आदि की ताकतों के संयोजन पर निर्भर करेगी। पानी में कणों की गति अलग-अलग वेगों और दाब प्रवणताओं के कारण जटिल है।

2. गाद अपक्षरण और विशेषताएँ

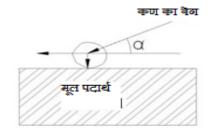

तलछटी चट्टानों से उत्पन्न गाद, पृथ्वी की सतह पर वायुमंडल और जलमंडल की परस्पर क्रिया से उत्पन्न एक प्रतिक्रिया उत्पाद है। यह सर्वविदित तथ्य है कि हिमालयी क्षेत्रों की भूगर्भ रचना अपेक्षाकृत कमजोर और नाजुक है क्योंकि इन पर्वत शृंखलाओं को अपेक्षाकृत युवा माना जाता है और अभी भी निरंतर बदलाव की प्रक्रिया में है तथा बर्फ के आवधिक गठन एवँ द्रवीभूत के परिणाम स्वरूप अपरिपक्व चट्टाने टूटती हैं और गाद का निर्माण होता है। 0.25 मिमी या उससे छोटे आकार का क्वार्टज कण गाद का प्रमुख हिस्सा है और कभी-

कभी गाद में इसकी मात्रा 98% तक होती है। मोह के पैमाने (Moh's Scale) पर क्वार्ट्ज की कठोरता 7 से 8 के बीच है जो टर्बाइन घटकों की निर्माण सामग्री या धातु की कठोरता से अधिक है। कई सौ मीटर के उच्च दबाव (High Head) पर चलने वाली टर्बाइन के लिये सूक्ष्म एवं पैनी कणों की गाद की अधिकता खतरनाक हो सकती है। तीखे एवं कोणीय कण, गोलीय कणों की अपेक्षा ज्यादा क्षरण करते है।

हमारे देश में अधिकांश जल-विद्युत संयंत्र हिमालयी क्षेत्र में स्थित हैं, जहाँ जल संचयन बाँध केवल कुछ च्निंदा स्थानों पर ही बनाए जा सकते हैं और बिजली घरों को सामान्य तौर पर 'रन ऑफ रिवर' रूप में ज्यादा चलाया जाता है। इस क्षेत्र में नदियाँ विशेष रूप से मानसून के दौरान बड़ी मात्रा में गाद ले जाती हैं और नदियों में गाद की मात्रा विभिन्न अविध या वर्षों में बह्त व्यापक रूप से भिन्न हो सकती है। विस्तृत गाद निस्तारण व्यवस्था के बावजूद, हजारों टन गाद हाइड्रो टर्बाइन के जलमग्न हिस्सों से ग्जरती है। इससे भारी क्षरण होता है। हालांकि, क्लोराइड और सल्फेट आयनों की अन्पस्थिति के कारण हिमालयी नदियों के पानी की ग्णवता प्रकृति में गैर-संक्षारक है। विभिन्न भूगर्भीय मापदंडों जैसे मृदा प्रकार, जलवाय्, वनस्पतिक विस्तार, ढलान, भूमि उपयोग आदि के आधार पर विशिष्ट गाद के कणों के आकार, वितरण और उनकी खनिज विशेषताएं एक क्षेत्र से दूसरे क्षेत्र एवं एक नदी से दूसरी नदी में भिन्न हो सकती हैं। एक विशिष्ट हिमालयी नदी में गाद का खनिज संघटन तालिका-1 में दिया गया है:

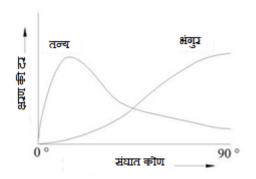
विद्युत वाहिनी तृतीय अंक (जल-विद्युत विशेषांक) केन्द्रीय विद्युत प्राधिकरण अप्रैल 2023 तालिका-1 एक विशिष्ट हिमालयी नदी में गाद का खनिज संघटन

खनिज चट्टान	प्रतिशतता (%)	कठोरता (Moh's Scale)
क्वार्ट्ज़	75-98	7
फाइलाइट	3-13	2
केलसाइट	2	3


चित्र 1: हाइड्रो टर्बाइन के जलमग्न विभिन्न हिस्सों का गाद क्षरण से नुकसान

3. गादीय क्षरण की क्रियाविधि

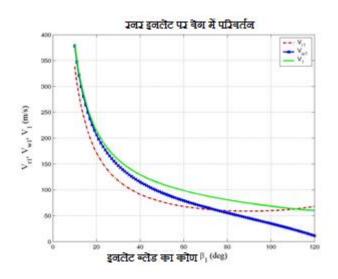
ऐसा देखा गया है कि जल विद्युत परियोजना के जलमग्न हिस्सों में गाद क्षरण के कारण पदार्थ क्षरण की दर (w), गाद के कणों की धातु की सतह पर टकराने वाले कोण (α), सापेक्षिक वेग (ν), गाद की


विशेषताओं (सांद्रता, आकार, आकृति तथा कठोरता), मूल निर्माण सामाग्री की विशेषताओं तथा इंडेक्स 'n' (टर्बाइन के प्रकार के हिसाब से 2-3 के बीच) का फलन होती है। कटाव यह निम्न समीकरण द्वारा दर्शाया जा सकता है:

 $w = f_1(\text{silt characteristics}) f_2(\text{base material characteristics}) f_3(\alpha) v^n$

चित्र 2: कण चोट की वजह से गाद

चित्र 2 गाद के एक कण का धातु की सतह पर एक कोण (α) तथा सापेक्षिक वेग (v) से टकराने का आरेखीय निरूपण है। इस सापेक्षिक वेग (v) के दो भाग होते हैं। लम्बवत भाग अपने परिमाण के हिसाब से स्थानीय विकृति का कारण बनता है, तथा वेग का क्षैतिज भाग घिसाव की वजह से धातु सामाग्री के क्षरण का जिम्मेदार होता है।

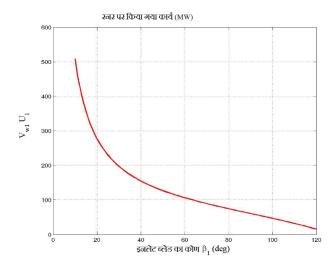

चित्र 3: कटाव की दर v/s टकराव का कोण और पदार्थ का प्रकार

चित्र 3 निर्माण धातु के घिसने या टूटने की दर को कण के टकराने के कोण (α) तथा निर्माण धातु की प्रकृति के फलन के रूप मे प्रदर्शित करता है। यदि निर्माणधातु तन्य (ductile) है तो अधिकतम घिसाव 20 डिग्री से 30 डिग्री के कोण पर होता है जबिक भंगुर (brittle) धातु के लिए अधिकतम क्षरण 90 डिग्री के कोण के आसपास होता है। परन्तु किसी भी प्रकार की धातु के लिये, 0 डिग्री के लगभग कोण पर क्षरण की दर नगण्य होती है और इसलिए जल मे गाद की अधिकता होते हुए भी पेन स्टोक (Penstock) में कोई क्षरण नहीं दिखता।

क्षरण से बचने का मुख्य तरीका उस तरह की धातु का इस्तेमाल करना है जो सिर्फ निर्माण और चलने में ही खरा न उतरे बल्कि उच्चतम स्तर का क्षरण भी झेलने में प्रभावी हो ।

4. गादीय क्षरण तथा हाइड्रो टरबाइन ब्लेड की संरचना में संबंध

हाइड्रो टर्बाइन के इनलेट ब्लेड का कोण, सापेक्ष वेग (v) का संचालन का एक मुख्य कारक है। इनलेट ब्लेड के कोण में वृद्धि सापेक्ष वेग में कमी करती है।


चित्र 4: इनलेट ब्लेड के कोण के साथ वेग में परिवर्तन

यहाँ:

 v_1 रनर ब्लेड की इनलेट पर जल का निरपेक्ष वेग v_{r1} रनर ब्लेड की इनलेट पर जल का सापेक्ष वेग v_{w1} रनर ब्लेड के इनलेट पर जल का घूर्णन वेग u_1 ब्लेड के इन लेट पर परिधीय गित

जैसा कि विदित है कि जल विद्युत परियोजना के जलमग्न घटकों का गाद से क्षरण जल के सापेक्ष वेग का ही फलन है, अत: ये भी इनलेट ब्लेड का कोण बढ़ाने पर घटता है। फिर भी, यदि इनलेट ब्लेड के कोण को बढ़ाया जाए तो किया गया कार्य जबरदस्त तरह से घट जाता है (चित्र 5),

परिणामस्वरूप हाइड्रो टर्बाइन की क्षमता कम हो जाती है। अतएव क्षमता और गाद क्षरण के बीच सामंजस्य बिठाना जरूरी है जिससे कि बेहतर डिजाइन का टर्बाइन ब्लेड बनाया जा सके। इस पहलू को हाइड्रो टर्बाइन अभिकल्प या डिजाइनर द्वारा संविदात्मक/ व्यावसायिक बाध्यताओं के मद्देनजर विशेष ध्यान में रखा जाता है।

चित्र 5: इनलेट ब्लेड के कोण के साथ किया गया कार्य में परिवर्तन

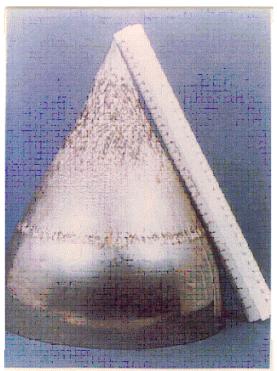
5. केविटेशन या गुहिकायन क्षरण

यदि सतत प्रवाह में धारा-रेखा की दिशा में द्रव का वेग बढ़ता है तो दबाव कम होता है। फिर भी, किसी भी द्रव में, स्थानीय निरपेक्ष दबाव द्रव के वाष्पीय दबाव के नीचे नहीं जा सकता है। यदि किसी बिंदु पर, यह वाष्पीय दबाव तक पहुँच जाता है तो द्रव उबलने लगता है और छोटे-छोटे वाष्प के बुलबुले बड़ी संख्या में बनने लगते हैं। ये बुलबुले बहाव के साथ बहते हैं और जिस बिंदु पर दबाव अधिक होता है, वहाँ बुलबुले अचानक फूट जाते हैं क्योंकि वाष्प फिर से द्रव में बदल जाता है। इस तरह एक केविटी या गुहिकायन बन जाती है और चारों ओर का द्रव उसको भरने लगता है। हर दिशा से आने वाला द्रव केविटी के केंद्र में टकराता है, जिससे कि बहुत ऊँचा स्थानीय दबाव (1GPa तक) उत्पन्न होता है। पड़ोस में आने वाली ठोस सतह पर भी यह तीव्र दबाव तरंगों के

माध्यम से आगे बढ़ता है जैसे कि जलाघात में होता है, तब भी जब गुहिकाय ने वास्तव में कोई ठोस सतह पर नहीं होती है।

यह बारी-बारी से वाष्प के बुलबुलों का बनना, बिगड़ना, एक सेकण्ड में कई हजार बार पुनरावृत्ति कर सकता है। यह तीव्र दबाव, जो कि बहुत छोटे से भाग पर बहुत सूक्ष्म समय के लिए कार्य करता है, सतह पर भयंकर क्षिति कर सकता है। धातु सामाग्री अंततोगत्वा, शायद संक्षारण की वजह से, 'फटीग' क्रिया से टूट जाती है और इसलिए सतह पर लाइनें और गड़ढे बन जाते हैं। यहाँ तक कि सतह का कुछ हिस्सा टूट कर अलग भी हो सकता है। जब केविटेशन हाइड्रो टर्बाइन में होता है तो ऐसी आवाजें आती है मानो कंकर मशीन में डाले गए हो।

फ्रांसिस और कप्लान टर्बाइन में, गुहिकाएँ मुख्यतः रनर और ड्राफ्ट ट्यूब कोन के बाहरी हिस्से पर बनतीं हैं और पेलटन टरबाइन में नीडल, नोजल और रनर बकेट पर बनतीं हैं जैसे ही इन हिस्सों के पास दबाव एक न्यून सीमा तक पहुँचता है |


6. निष्कर्ष

- टर्बाइनों के जलमग्न भागों में क्षरण का कारण गाद और गुहिकायन क्षरण है। धातु की सतह पर गाद कण का संघात कोण, सापेक्ष वेग, गाद विशेषताओं (सांद्रता, आकार, आकृति तथा कठोरता) और धात्विक विशेषताएं गाद क्षरण के लिए उत्तरदायी कारक हैं, जबिक द्रव में गुहिकायन क्षरण उस तापमान पर स्थानीय निरपेक्ष दबाव के उसके वाष्पीय दबाव के स्तर से नीचे गिरने के कारण होता है। या तो गाद या गुहिकायन क्षरण एक-दूसरे को आरंभ करने का कारण बन सकता है और इस प्रकार क्षरण पर स्पाइरल (spiral) प्रभाव पड़ता है।
- ii. हाइड्रोलिक डिजाइन में सुधार, बेहतर क्षरण-प्रतिरोधी सामग्री का उपयोग और स्वीकार्य

गुहिकायन स्थिति के भीतर टर्बाइन का संचालन करना गाद और गुहिकायन क्षिति से निपटने के मुख्य उपाय हैं। हालांकि, टर्बाइन के लिए अच्छी हाइड्रोलिक डिज़ाइन अपनाकर गुहिकायन क्षरण को काफी हद तक रोका जा सकता है। गाद क्षरण के लिए ऊपर सूचीबद्ध कई कारकों को नियंत्रित नही किया जा सकता है, फिर भी एक अच्छा डिज़ाइन गाद क्षरण को कम जरूर कर सकता है।

iii. क्रेता द्वारा उत्पादक इकाई आपूर्तिकर्ताओं को निर्दिष्ट मानक सॉफ्टवेयर पैकेज की मदद से गाद क्षरण के खिलाफ टर्बाइन डिजाइन की हढ़ता की जांच करने के लिए कम्प्यूटेशनल फ्लुइड डायनामिक्स विश्लेषण (सीएफडी) करने और निर्दिष्ट शर्तों के तहत गाद क्षरण की मात्रा को दर्शाता हुआ परिणाम प्रस्तुत करने के लिए कहा जा सकता है। यह टर्बाइन घटकों यानी रनर ब्लेड प्रोफ़ाइल, विभिन्न कोणों और वेगों आदि का इष्टतम डिजाइन सुनिश्चित कर सकता है।

चित्र 6: गाद क्षरण से फ्रांसिस और पेलटन पर हानिकारक प्रभाव

"भाषा वह माध्यम है जिससे कोई भी समाज अपना ज्ञान, संस्कृति और संस्कार भावी पीढ़ियों तक पहुंचाता है"। श्री नरेंद्र मोदी (प्रधानमंत्री)

गांधी सागर जल विद्युत स्टेशन (5x23 मेगावाट) मध्य प्रदेश में नवीनीकरण एवं आध्निकीरण के प्रस्ताव संबंधित मामले का अध्ययन

राकेश कुमार, मुख्य अभियंता, राज कुमार जायसवाल, उपनिदेशक, श्रेय कुमार, सहायक निदेशक, जल-विद्युत अभियांत्रिकी और प्रौद्योगिकी विकास प्रभाग

प्रस्तावना

यह अध्ययन गांधी सागर जल विद्युत स्टेशन (5x23 मेगावाट) में नवीनीकरण और आधुनिकीकरण (आर एंड एम) कार्यक्रम से संबंधित है। गांधी सागर जल विद्युत स्टेशन मध्य प्रदेश के मंदसौर जिले में चंबल नदी के दाहिने किनारे पर गांधी सागर बांध के तल पर बनाया गया है। 115 मेगावाट की क्षमता वाला गांधी सागर जल विद्युत स्टेशन मूल रूप से 1960 में शुरू किया गया था

और 60 से अधिक वर्षों के संचालन/ उपयोगी जीवन की सेवा दे चुका है । मध्य प्रदेश पावर जनरेटिंग कंपनी लिमिटेड (एमपीजीसीएल), के कंसलटेंट (सलाहकार) द्वारा इस स्टेशन में 23 मेगावाट की पांचों इकाइयों में नवीनीकरण और आधुनिकीकरण का प्रस्ताव किया गया है। इकाईयों के संचालन के दौरान पाई गई समस्याओं के साथ-साथ अंतर्निहित समस्याओं के समाधान हेतु की जाने वाली कार्रवाई का विस्तृत विवरण इस लेख में दिया गया है।

गांधी सागर बांध

परियोजना की मुख्य विशेषताएं

		115 (5.00)
1.	स्थापित क्षमता	115 (5x23) मेगावाट
2.	अभिकल्प ऊर्जा	420.48 मिलियन यूनिट
3.	जलाशय का प्रकार	चिनाई गुरुत्वाकर्षण बांध
4.	जलाशय की ऊंचाई	62.20 मीटर
5.	जलाशय की लंबाई	514 मीटर
6.	जलाशय का जलग्रहण क्षेत्र	23,025 वर्ग किलोमीटर
7.	जलाशय का भंडारण पूर्ण जलाशय स्तर (एफआरएल) तक	7,164.960 लाख घन मीटर
8.	पूर्ण जलाशय का जल स्तर (एफआरएल)	399.90 मीटर
9.	न्यूनतम जलाशय का जल स्तर (एमडीडीएल)	381 मीटर
10.	उच्चतम टेल जल स्तर (टीडब्ल्यूएल)	353.68 मीटर
	न्यूनतम टेल जल स्तर (टीडब्ल्यूएल)	344.4 मीटर
11.	जल संवाहक प्रणाली (पेनस्टॉक) का व्यास	4.73 मीटर
12.	जल संवाहक प्रणाली (पेनस्टॉक) कीलंबाई	41.77 मीटर
13.	गति	188 घूर्णन प्रति मिनट
14.	अधिकतम हेड	55.5 मीटर
	न्यूनतम हेड	35.0 मीटर
15.	निस्सरण (डिस्चार्ज)	63.43 घन मीटर प्रति सेकंड

नवीनीकरण और आधुनिकीकरण का प्रस्ताव

"एमपीपीजीसीएल द्वारा प्रस्ताव"

ऊर्जा उत्पादक स्टेशन 60 से अधिक वर्षों की सेवा प्रदान कर चुका है तथा वर्ष 2019 में आयी बाढ़ के कारण इकाइयों को हुए नुकसान के बाद इन पुरानी इकाइयों में नवीनीकरण और आधुनिकीकरण (आर एंड एम) गतिविधियों का प्रस्ताव रखा गया है । इन प्रस्तावित कार्यों के उपक्रम का उद्देश्य जल विद्युत स्टेशन के परिचालन जीवन का विस्तार करना है और दक्षता में सुधार, संचालन में लचीलापन, विश्वसनीयता और सुरक्षा के लिए नई तकनीकों और उपकरणों का उपयोग करना है।

गांधी सागर जल विद्युत स्टेशन की इकाइयां ज्यादातर बरसात के मौसम में आधार भार स्टेशन के रूप में और शेष वर्ष के लिए शिखर भार स्टेशन के रूप में चलती हैं । बिजली उत्पादन के बाद छोड़े गए पानी को अंततः कोटा बैराज के माध्यम से सिंचाई के लिए उपयोग किया जाता है।

गांधी सागर जल विद्युत स्टेशन को 14.09.2019 को भारी बाढ़ और परिणामी जलमग्न का सामना करना पड़ा था। स्टेशन की मूल क्षमता 115 मेगावाट (5x23 मेगावाट) थी लेकिन गांधी सागर जल विद्युत स्टेशन से बिजली का उत्पादन, बाढ़ के कारण पूर्ण रूप से बंद होने पर शून्य हो गया था। बाद में, ठेकेदार द्वारा पुनरूद्धार कार्य करने के बाद, यूनिट-1 और यूनिट-5 को निराकरण

करने, साफ करने और सुखाने का कार्य करने के उपरांत फिर से बहाल कर दिया गया है और इकाइयां क्रमश: 18 मेगावाट और 22 मेगावाट की अवनिर्धारित क्षमता पर उत्पादन कर रही हैं । स्टेटर वाइंडिंग के तापमान में वृद्धि और अन्य परिचालन समस्याओं के कारण यूनिट (यूनिट-1 और यूनिट-5) जो प्रचालन के अधीन हैं, उनको डिज़ाइन की गई क्षमता पर चलाया नहीं जा सका । इसके अलावा, यूनिट-4 का पुनरुद्धार/ पुनर्स्थापन का कार्य भी 15 मेगावाट की अवनिर्धारित क्षमता के साथ पूरा किया गया और वह 28.02.2022 से वापस परिचालन में है । अन्य इकाइयों 2 और 3 को अभी तक पुनर्स्थापत नहीं किया जा सका है।

एमपीपीजीसीएल प्रस्ताव में यूनिट क्षमता वृद्धि संबंधित विवरण

एमपीपीजीसीएल के सलाहकार द्वारा यूनिट-1 और यूनिट-5 पर अवशिष्ट जीवन मूल्यांकन (आरएलए) का अध्ययन किया गया (पावर हाउस में दो प्रकार की समरूप इकाइयों में से प्रत्येक में से एक पर किया गया) और जिसके आधार पर, अन्य इकाइयों 2, 3 और 4 के लिए भी यही समाधान स्झाया गया । इकाइयों की बंद होने की स्थिति के कारण, आरएलए अध्ययन के दौरान प्रवाही परिक्षण नहीं किया जा सका, इसलिए उपलब्ध स्टेशन डाटा से दक्षता विवरण प्राप्त किया जाता है । हालाँकि, रिपोर्ट विशेष रूप से अन्य इकाइयों 2, 3 और 4 की स्थिति के बारे में नहीं बताती है । इसके अलावा, सलाहकार द्वारा किए गए मूल्यांकन के अन्सार कार्यों के दायरे में म्ख्य रूप से टर्बाइन और संबंधित उपकरण की मरम्मत, गेट एवं उच्चालक और सिविल कार्यों की मरम्मत, एवम् जनरेटर और संबंधित उपकरण, जनरेटर ट्रांसफार्मर, सहायक उपकरण, विद्युत उपकरण, नियंत्रण और स्रक्षा प्रणाली के प्रतिस्थापन शामिल हैं। इसके अलावा, यूनिट 4 और 5 आदि के लिए टर्बाइन/ चक्राल/ निस्सरण वृत्त/ म्ख्य आवरण/ टर्बाइन ध्रा आदि का नवीनीकरण/ मरम्मत करने का प्रस्ताव है, जबकि यूनिट-1, 2 और 3 के लिए टर्बाइन ध्रा को बदलने का प्रस्ताव है, तथा अन्य मूल घटकों को इन इकाइयों में रखने का प्रस्ताव है।

प्रस्तावित आरएंडएम कार्यों के पूरा होने के बाद, इकाइयां प्रत्येक 23 मेगावाट की मूल क्षमता पर उत्पादन करेंगी। इसके अलावा, रिपोर्ट में विशेष उल्लेख पर विचार करते हुए यह अनुमान लगाया गया है कि संयंत्र/ उपकरण का जीवन 25 वर्षों तक बढ़ाया जाएगा।

केंद्रीय विद्युत प्राधिकरण (के.वि.प्रा.) द्वारा सुझाव एवं उनके कारण, और एमपीपीजीसीएल द्वारा उन प्रस्तावों पर अमल

मशीन के उच्च दक्षता और विशिष्ट गति संस्करण के साथ उन्नयन (अपरेटिंग) संभावना का अर्थ है कि उच्च दक्षता वाली इकाई और टर्बाइन अभिकल्प उच्च निर्वहन को संभालने में सक्षम रहेगी । यदि टर्बाइन के प्रतिस्थापन के साथ-साथ निस्सरण में वृद्धि के बिना उन्नयन की जाती है तो केवल 2% (यानी लगभग 0.5 मेगावाट) का उन्नयन संभव हो सकता है और जो महत्वपूर्ण नहीं है । यदि व्यवहार्यता के आधार पर महत्वपूर्ण उन्नयन हासिल किया जाता है तो उन्नत की गई इकाइयां मानसून के दौरान पानी के अधिप्रवाह को कम करने में मदद करेंगी, और बिजली क्षेत्र में हरित ऊर्जा/ मेगावाट योगदान में भी स्धार करेंगी ।

यदि अन्य कार्यों के अलावा प्रस्तावित टर्बाइन नवीनीकरण के साथ उन्नयन की जाए तो इकाई संचालन क्षमता लगभग 90.18% होगी। गाइड वेन ओपनिंग पर उपलब्ध आंकड़ों से यह समझा जाता है कि लगभग 80% गाइड वेन ओपनिंग के साथ 100% मशीन लोडिंग संभव थी और 10% निरंतर ओवर लोडिंग के लिए लगभग 90%, इसलिए यह अनुमान लगाया जा सकता है कि गाइड वेन ओपनिंग में उपलब्ध इस अंतर्निहित मार्जिन का उपयोग संबंधित उन्नयन ऑपरेशन के लिए किया जा सकता है और इसमें जनरेटर, जनरेटर ट्रांसफार्मर आदि के संबंधित उन्नत आकार के घटकों की खरीद शामिल होगी। यूनिट की उन्नयन क्षमता को अंतिम रूप देने के लिए सुरक्षा / कोडल प्रावधानों एमडीडीएल और अंतग्राही प्रत्यक्ष स्तरों

के बीच अपेक्षित सक्शन हेड की उपलब्धता, मशीन के उपरी प्रवाह (अपस्ट्रीम) / अनुप्रवाह (डाउनस्ट्रीम) की संपूर्ण जल चालक प्रणाली की क्षमता और सिविल सरंचना सामर्थ्य का आकलन करने की आवश्यकता है। चूँकि सिविल सरंचना को छोड़कर ज्यादातर विद्युत व अभियांत्रिक उपकरणों में आर एंड एम कार्यों के बाद बदलाव हो जायेगा, इसलिए इन कार्यों के तहत होने वाली लागत से उपयोगी जीवन का जो टैरिफ वसूली के लिए 25 वर्ष का प्रस्ताव था, उसे के.वि.प्रा. ने 25 वर्ष यथोचित से अधिक करने का सुझाव दिया।

बाढ़ से पहले, जनरेटर की दक्षता 86.96% थी (हालांकि निर्धारित परिचालन के लिए मूल आपूर्ति दक्षता 97.90% थी) और टर्बाइन की दक्षता 91.50% थी (हालांकि निर्धारित परिचालन के लिए मूल आपूर्ति दक्षता 92.50% थी), जिससे स्टेशन की समग्र दक्षता 79.57% हो गई है। 98.02% दक्षता के नए जनरेटर (प्रतिस्थापन) और 92.00% दक्षता (मरम्मत / नवीनीकरण के साथ) के टरबाइन के साथ प्रस्तावित आरएंडएम कार्यों के तहत, स्टेशन की समग्र दक्षता 90.18% होगी और इसके परिणामस्वरूप 10.61% की वृद्धि इकाई दक्षता में होगी और इसी तरह का लाभ वार्षिक ऊर्जा उत्पादन में भी होगा।

यदि टर्बाइन सहित प्रतिस्थापन के साथ उन्नयन की गयी तब यूनिट में संभव उन्नयन की सीमा एमडीडीएल और अंतग्राही प्रत्यक्ष स्तरों के बीच आवश्यक सक्शन हेड की उपलब्धता और मौजूदा मूल्य से अधिक अतिरिक्त निस्सरण को संभालने के लिए मशीन के उपरिप्रवाह/अनुप्रवाह जल चालक प्रणाली की क्षमता, सिविल सरंचना सामर्थ्य और जनित्र बैरल / टर्बाइन गइढे के आकार तक सीमित होगी। तदान्सार, इकाई की उन्नयन क्षमता का

पता लगाया जा सकता है । प्राने पावर हाउसों में उपलब्ध अंतर्निहित मजबूत डिजाइन के आधार पर उन्नयन क्षमता टर्बाइन के सिर्फ नवीनीकरण के साथ हासिल की गई उन्नयन क्षमता से अधिक हो सकती है और इसलिए स्टेशन से अधिकतम चरम क्षमता के लिए इसका पता लगाया जा सकता है । आर एंड एम कार्यों के तहत अपरेटिंग को अधिकतम करने का यह अवसर इस तथ्य पर विचार करते ह्ए बह्त उपयोगी हो सकता है कि यह एक भंडारण परियोजना है और बड़े पैमाने पर नियोजित नवीकरण ऊर्जा क्षमता वृद्धि के आलोक में शिखर भार स्टेशन, संतुलनकारी रिजर्व आदि के रूप में कार्य करके ग्रिड स्थिरता में महत्वपूर्ण योगदान देगी। यह सौर और पवन जो प्रकृति में अत्यधिक रुक-रुक कर और परिवर्तनशील ऊर्जा स्रोत हैं, को पूर्णतया उपयोग में लाने में मददगार होगी। । मौजूदा रनर की रूपरेखा की त्लना में बेहतर रनर रूपरेखा के आधार पर यूनिट दक्षता न्यूनतम 92.14% होगी, जिसके परिणामस्वरूप ऊर्जा उत्पादन में वृद्धि होगी (डिजाइन ऊर्जा में लगभग 39.48 मिलियन यूनिट की वृद्धि और लगभग 16 करोड़ रुपये का अतिरिक्त वार्षिक लाभ 4 रुपये/ यूनिट बिजली की दर से होगा) । मूल्यांकन के अनुसार संयंत्र की अधिकतम क्षमता में लाभ के अलावा यह भी ध्यान दिया जा सकता है कि इस अतिरिक्त (मेगावाट) शिखर क्षमता में लाभ ग्रीनफील्ड बिजली परियोजना की समान क्षमता की स्थापना की तुलना में बह्त कम पूंजीगत लागत पर होगा। इसके अलावा, नई इकाई के कारण प्रचालन एवं रख रखाव (ओ एंड एम) खर्च श्रू में कम होगा। इन कार्यों के तहत होने वाले निवेश/ लागत की वसूली को मौजूदा मध्य प्रदेश विद्युत नियामक आयोग नियमों के अन्सार प्रश्ल्क संशोधन के माध्यम से किया जाएगा।

	नवीनीकरण और आधुनिकीकरण के लाभ		
	प्राचल (पैरामीटर)	नवीनीकरण और	नवीनीकरण और आधुनिकी करण के
		आधुनिकीकरण के पूर्व	बाद
1.	स्थापित क्षमता	5x23=115 मेगावाट	5x25.5 = 127.5 मेगावाट
2.	अभिकल्प ऊर्जा	420.48 मिलियन यूनिट	459.96 मिलियन यूनिट
3.	परिचालन जीवन	खत्म के कगार पर	25 वर्ष से अधिक

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4.	पर्यवेक्षी नियंत्रण और	पहले नहीं था	अब होगा
	विवरण अधिग्रहण (स्काडा)		
5.	संरक्षण (प्रोटेक्शन)	पुराने	उन्नत किस्म के, परिचालन में
			सुलभता और बेहतर ग्रिड सुरक्षा
6.	दक्षता	79.57%	90.18%

नवीनीकरण और आधुनिकीकरण के दौरान चुनौतियां

इकाइयों के नवीनीकरण, आधुनिकीकरण और उन्नयन (आरएम एंड यू) का कार्य कुछ अंतर्निहित समस्याओं को ठीक करने और नई तकनीक को अपनाने का अवसर प्रदान करता हैं। रिवर्स इंजीनियरिंग, सघन माप एवं रिकॉर्ड जैसी चुनौतियों के साथ ही कई पुराने पुर्जों के साथ मिलान करने की आवश्यकता पर विचार करना भी चुनौतीपूर्ण है, जिसके लिए न तो आलेख और न ही अभिकल्प गणना उपलब्ध हैं। इकाइयों की बंद होने की स्थित के कारण, आरएलए अध्ययन के दौरान जो प्रवाही परीक्षण (रन टेस्ट) नहीं किया जा सका, उसे उपलब्ध स्टेशन डाटा/ दक्षता विवरण से प्राप्त किया जाता है।

निष्कर्ष

समय- समय पर नवीनीकरण, आधुनिकीकरण और उन्नयन और जीवन विस्तार कार्यक्रम शुरू करने पर जल विद्युत् स्टेशन का जीवन कम लागत पर बढ़ाया जा सकता है और उसे निरंतर, दक्षता, सुरक्षित, विश्वसनीय और कुशल रूप से चलाया जा सकता है। मुख्य उपकरणों में परिवर्तन के माध्यम से बड़े नवीनीकरण के लिए स्टेशन का उन्नयन संभव है। उपरोक्त अनुच्छेदों को ध्यान में रखते हुए उन्नयन क्षमता को 10 प्रतिशत से अधिक भी हासिल किया जा सकता है।

जल विद्युत गृहों के निष्पादन का प्नर्विलोकन

राहुल सिंह, उप-निदेशक, अर्पिता उपाध्याय, उप-निदेशक, बलवान कुमार, निदेशक जल परियोजना योजना एवं अन्वेषण प्रभाग

प्रस्तावना

किसी भी देश की आर्थिक प्रगति के लिए विद्युत ऊर्जा महत्वपूर्ण बुनियादी आवश्यकताओं में से एक है। जल विद्युत ऊर्जा हमारे देश में पिछले 100 वर्षों से अक्षय ऊर्जा का सबसे विश्वसनीय स्रोत रहा है । यह गैर-प्रदूषणकारी, शून्य उत्सर्जन /प्रवाह होने की वजह से पर्यावरण के अनुकूल है। जल विद्युत केन्द्रों में जल्दी शुरू करने, रोकने और लोड करने की अंतर्निहित क्षमता होती है और इस प्रकार वे बिजली व्यवस्था की विश्वसनीयता में सुधार करने में मदद करते हैं। इसके अलावा, भंडारण प्रकार के जल विद्युत स्टेशन आमतौर पर सिंचाई, बाढ़ नियंत्रण, पीने के पानी जैसे अतिरिक्त लाभों के साथ, बहुउद्देशीय नदी घाटी परियोजनाओं का एक हिस्सा होते हैं। इसलिए, जहां तक संभव हो हाइड्रो पावर का अधिकतम उपयोग किया जाना चाहिए।

विद्युत वाहिनी तृतीय अंक (जल-विद्युत विशेषांक) केन्द्रीय विद्युत प्राधिकरण अप्रैल 2023 जल विद्युत केन्द्र के लाभ

- <u>नवीकरणीय, स्वच्छ और हरित विकल्प</u> : कोई जीवाश्म ईंधन नहीं, नगण्य ग्रीन हाउस गैस उत्सर्जन, कोई विषाक्त उप-उत्पाद नहीं।
- ग्रिड को सहायक समर्थन फास्ट रैम्पिंग स्रोत : पीकिंग और बैलेंसिंग पावर, वोल्टेज और फ्रीक्वेंसी रेगुलेशन, जनरेशन में फ्लेक्सिबिलिटी, ब्लैक स्टार्ट क्षमता और स्पिनिंग रिजर्व ।
- पर्यावरणीय स्थिरता :पीने का पानी उपलब्ध कराना,
 खराब मौसम में नदी के प्रवाह में वृद्धि, बेसिन
 अध्ययन आधारित योजना कराना ।
- <u>आर्थिक स्थिरता</u> : प्रारंभिक वर्षों के पश्चात में निम्न/सामान्य टैरिफ, भू-राजनीतिक जोखिम या मूल्य वृद्धि का जोखिम नहीं, लंबी अवधि में सबसे सस्ती बिजली ।
- सामाजिक स्थिरता : रहने की स्थिति, आय, रोजगार
 और बुनियादी ढांचे में सुधार करता है, कृषि
 उत्पादकता में वृद्धि, आदि ।

हाइड्रो परियोजनाओं का वर्गीकरण:

• रन-ऑफ-रिवर योजनाएं

बहुत कम या बिना स्टोरेज वाली स्कीमें (दैनिक/साप्ताहिक)

• <u>भंडारण योजनाएँ (बहुउद्देश्यीय और विशुद्ध रूप से</u> <u>भंडारण परियोजनाएँ दोनों शामिल हैं)</u>

कम प्रवाह अविधि के दौरान उपयोग के लिए, उच्च प्रवाह अविधि में अतिरिक्त पानी को संग्रहित करने के लिए जलाशय की योजनाएँ।

• पंप स्टोरेज परियोजनाएं

दो जलाशयों के साथ योजनाएं- ऊपरी और निचला जलाशय। ऊपरी जलाशय से निचले जलाशय में उत्पादन के दौरान पानी का प्रवाह और विद्युत ऊर्जा के भंडारण हेतु पम्पिंग के द्वारा निचले जलाशय से ऊपरी जलाशय में पानी का संग्रहण। दिनांक 31.12.2022 तक देश में कुल प्रतिष्ठापित विद्युत उत्पादन क्षमता 410339 मेगावाट थी जिसमें 25 मेगावाट से ज्यादा प्रतिस्थापित क्षमता वाले जल-विद्युत स्टेशनों की क्षमता 46850 मेगावाट (11.42%) थी।

केन्द्रीय विद्युत प्राधिकरण (के.वि.प्रा) उत्पादन निष्पादन के सतत प्रबोधन, ब्रेकडाउन के कारणों के विश्लेषण, नवीनीकरण तथा आधुनिकीकरण कार्यों आदि के द्वारा ऊर्जा उत्पादक उपक्रमों के साथ सहयोग से, जल विद्युत केन्द्रों के निष्पादन में निरंतर सुधार के लिए सघन प्रयास कर रही है । आगामी वर्षों में सौर एवं पवन स्रोतों से संभावित विशाल ऊर्जा क्षमता वृद्धि के कारण यह आवश्यक है कि मौजूदा जल विद्युत केन्द्रों को ग्रिड की स्थिरता और सुरक्षा बनाए रखने के लिए उनके प्रदर्शन और उपलब्धता में सुधार करना चाहिए ताकि पीकिंग और संतुलन ऊर्जा प्रदान करने के लिए उनका उपयोग किया जा सके।

जल विद्युत केन्द्रों के संचालन प्रदर्शन को प्रभावित करने वाले कई पहलू हैं, जिनमें नियोजित रखरखाव, योजनाबद्ध/ आंशिक आउटेज, वास्तविक प्रवाह का पैटर्न इत्यादि शामिल हैं । वर्ष के विभिन्न मौसमों के दौरान, पानी की संभावित उपलब्धता की जानकारी भी जल-विद्युत उत्पादन के आकलन के लिए महत्वपूर्ण है। जलग्रहण क्षेत्र में वास्तविक वर्षा की सीमा जल-विद्युत स्टेशनों में अंतर्वाह को प्रभावित करती है । इसलिए फोर्स्ड शटडाउन (मजबूरन बंद करना) के कारणों के विस्तृत विश्लेषण करने तथा अत्याधुनिक रखरखाव प्रथाओं को अपनाकर उनके पुनरावृत्ति को कम करने के लिए उपयुक्त उपायों से स्टेशन की परिचालन उपलब्धता में स्धार करने की आवश्यकता है।

प्रचालन उपलब्धता संबंधी सूचना (जिसकी गणना फोर्स्ड और योजनाबद्ध शटडाउन के आधार पर की जाती है) पर्याप्त और विश्वसनीय विद्युत आपूर्ति सुनिश्चित करने

में काफी महत्वपूर्ण है। विभिन्न प्रकार के आउटेज नीचे वर्णित हैं:

फोर्स्ड शटडाउनः

"एक जनरेटिंग यूनिट, ट्रांसिमशन लाइन, या अन्य सुविधा को आपातकालीन कारणों से बंद करना, या एक ऐसी स्थिति जिसमें उपकरण एक अप्रत्याशित ब्रेकडाउन के परिणामस्वरूप अनुपलब्ध है" को फोर्स्ड शटडाउन कहा जाता है । निरीक्षण या रखरखाव के लिए निर्धारित आउटेज फोर्स्ड शटडाउन में शामिल नहीं होता हैं।

योजनाबद्ध शटडाउन :

योजनाबद्ध शटडाउन, शटडाउन के लिए एक सिक्रय हिष्टिकोण है जिसमें शटडाउन का काम नियमित/ पूर्व निर्धारित आधार पर किया जाता है। किए जाने वाले कार्य का प्रकार और आवृत्ति उपकरण के रखरखाव के आधार पर भिन्न होती है। योजनाबद्ध शटडाउन का प्राथमिक उद्देश्य उपकरण के खराब होने या अनियोजित आउटेज के बिना, यथासंभव लंबे समय तक सुरक्षित रूप से चलते हुए उपकरण के प्रदर्शन को अधिकतम करना

जल विद्युत परियोजनाओं के विकास में धीमी वृद्धि तथा सौर एवं पवन ऊर्जा संसाधनों में बड़ी वृद्धि के कारण हाइड्रो की बढ़ती मांग के चलते समीक्षा में मौजूदा जलविद्युत क्षमता को बनाए रखने के लिए नवीनीकरण और आधुनिकीकरण पर अधिक जोर देने की जरूरत पर भी बल दिया जाता है।

यह समीक्षा विद्युत केन्द्र प्राधिकारियों को उपयुक्त प्रचालन एंव रखरखाव की (ओ0 एंड एम0) नीति तैयार करके जल विद्युत संयंत्रों की उपलब्धता में और सुधार लाने में उपयोगी मार्गदर्शन प्रदान करता है । फोर्स्ड शटडाउन के कारणों का भी व्यापक विश्लेषण करने की आवश्यकता होती है ताकि विनिर्माताओं / ओ एंड एम एजेंसियों द्वारा उचित उपाय किये जायें और इनकी पुनरावृत्ति को कम किया जा सके जिससे प्रचालन उपलब्धता में सुधार किया जा सके।

भारत में जल विद्युत् परियोजनाओं के जलाशयों पर तैरती (फ्लोटिंग) सौर ऊर्जा का विकास

अर्पिता उपाध्याय, उप-निदेशक जल परियोजना योजना एवं अन्वेषण प्रभाग

प्रस्तावना

किसी भी देश की अर्थव्यवस्था के विकास में ऊर्जा का महत्वपूर्ण योगदान होता है। भारत ने 24x7 विश्वसनीय और गुणवत्तापूर्ण ऊर्जा को सुनिश्चित करने के अपने प्रयास में कोई कसर नहीं छोड़ी है। यह उल्लेखनीय है कि भारत की नवीकरणीय स्थापित ऊर्जा क्षमता पिछले 7.5 वर्षों में 286% बढ़ी है। आज भारत लगभग 168 गीगा वाट (नवीकरणीय बड़े हाइड्रो सहित) की स्थापित क्षमता के साथ ऊर्जा क्षेत्र में वैश्विक नेता के रूप में उभर कर सामने आया है। अपने अत्यधिक अनुकूल नीतिगत

वातावरण और बजटीय समर्थन के साथ भारत ने स्वच्छ ऊर्जा के विकास को गित दी है और जीवाश्म (फॉसिल) आधारित ऊर्जा पर निर्भरता को काफी कम कर दिया है। 2030 तक 500 गीगा वाट नवीकरणीय स्थापित ऊर्जा के राष्ट्रीय लक्ष्यों को प्राप्त करने के लिए व विकास की गित को बनाए रखने के लिए विकल्पों का पता लगाने की आवश्यकता है। फ्लोटिंग सौर ऊर्जा एक ऐसा विकल्प है, जिसके विकास में दुनिया के लगभग सभी देश रुचि ले रहे है। और इसकी क्षमता आने वाले दिनों में तेजी से बढ़ने की उम्मीद है।

फ्लोटिंग सौर ऊर्जा के लाभ

"फ्लोटिंग सौर ऊर्जा" जमीन जैसे दुलर्भ संसाधनों पर निर्भर नहीं है अपितु जल निकायों जैसे कि जल विद्युत जलाशयों, औद्योगिक क्षेत्र के तालाबों, जल उपचार तालाबों, खनन तालाबों, झीलों और लैगून इत्यादि में इसकी स्थापना की जाती है । फ्लोटिंग सौर पैनल आमतौर पर पोंटून-आधारित फ्लोटिंग स्ट्रक्चर पर स्थापित किये जाते हैं। फ्लोटिंग स्ट्रक्चर को जलाशय के तल से एंकर एवं मूर (उपर-नीचे करना) द्वारा स्थिर किया जाता है। अतः इस विधि से ऊर्जा उत्पादन में प्रमुख लाभ निम्नवत् है-

- सीमित भूमि की आवश्यकता पड़ती है।
- कम जल वाष्पीकरण दर के कारण जल संरक्षण होता
 है।
- माइ्यूल के नीचे का जल निकाय उनके परिवेश के तापमान को सीमित रूप से कम बनाएरखने में मदद करता है जिससे उनकी दक्षता एवं उत्पादन में सुधार होता है।

फ्लोटिंग सौर ऊर्जा सिस्टम के प्रमुख घटक और विकास के लिए महत्वपूर्ण प्राचल (पैरामीटर)

फ्लोटिंग सौर ऊर्जा सिस्टम जलाशयों पर उपलब्ध पानी की सतह का उपयोग करता है । इसके मुख्य घटक स्ट्रक्चर व फ्लोटर है।

- फ्लोटिंग सिस्टम: इसका प्रमुख भाग फ्लोटिंग प्लेटफार्म होता है। इस पर फ्लोटिंग फोटो वोल्टेइक पैनल सिस्टम को स्थापित किया जाता है।
- एन्करिंग और मूरिंग सिस्टम: यह फ्लोटिंग आधार को जलाशय के तल से बांधकर जल की सतह पर पलायन करने से रोकता है तथा आवश्यक यान्त्रिक स्थिरता प्रदान करता है तथा पैनल को उचित दिशा मे बनाये रखने मे मदद करता है ।

भारत में फ्लोटिंग सौर ऊर्जा की क्षमता

भारत वर्ष में कई जल-विद्युत परियोजनाएं स्थापित है

जिनके जलाशयों में फ्लोटिंग सौर ऊर्जा को विकसित करने की अपार सम्भावनाएं हैं। इस सम्बन्ध में ऊर्जा और संसाधन संस्थान द्वारा किए गए एक अध्ययन में पाया गया है कि भारत वर्ष में 18000 वर्ग किमी जलाशयों में 280 गीगावाट ऊर्जा फ्लोटिंग सोलर द्वारा उत्पन्न की जा सकती है। इसमें से अधिकतम फ्लोटिंग सौर ऊर्जा क्षमता महाराष्ट्र, मध्यप्रदेश, कर्नाटक, तेलंगाना, आन्ध्र प्रदेश, उत्तर प्रदेश, गुजरात आदि में चिन्हित की गयी है।

वर्तमान विकास की स्थिति:

विश्व में फ्लोटिंग सौर परियोजनाओं में उत्तरोत्तर वृद्धि हो रही है। शुरुआत में ये परियोजनाएं अनुसंधान और प्रदर्शन के उद्देश्य से छोटे पैमाने पर थी, परन्तु वर्तमान में इनकी क्षमता में निरन्तर वृद्धि होती जा रही है। इस क्रम मे चीन 960 (MWp) क्षमता के साथ वर्तमान में फ्लोटिंग सोलर के क्षेत्र मे विश्व मे अग्रणी स्थान पर है। 210 (MWp) क्षमता के साथ जापान दूसरे स्थान पर व साउथ कोरिया तीसरे स्थान पर है।

भारत वर्ष में पहचान की गई जल-विद्युत परियोजनाओं के जलाशयों पर फ्लोटिंग सौर परियोजनाएं:

2016 में एनटीपीसी ने केरल के कायमकुलम जिले में स्थित जलाशय पर देश का सबसे बड़ा 100 किलोवाट (kW) क्षमता का संयंत्र स्थापित किया । इसके बाद एनटीपीसी ने सिम्हाद्री, आन्ध्र प्रदेश में 80 मेगावाट, रामगुंडम, तेलंगाना में 100 मेगावाट (जो कि देश में अब तक की सबसे बड़ी परियोजना है) फ्लोटिंग सौर पैयोजनाओं का विकास किया । इस समय 4000 मेगावॉट से अधिक क्षमता की परियोजनाएं विभिन्न चरणों में हैं, जिसके कारण इस सेक्टर का विकास बहुत सकारात्मक है।

दामोदर घाटी निगम (डी.वी.सी.) ने मैथन बाँध में 600

MW, पंचेत बाँध में 598 MW, तिलैया बाँध में 350 MW, कोनार बाँध में 298 MW क्षमताओं के फ्लोटिंग सोलर प्लांट चिन्हित कर लिए हैं।

बीबीएमबी के नंगल बाँध के तालाब में 15 MW फ्लोटिंग सौर ऊर्जा का विकास हो रहा है। कोपिली जल-विद्युत जलाशय पर 40 MW फ्लोटिंग सौर ऊर्जा प्लांट प्रस्तावित है।

जल विद्युत् परियोजनाओं के जलाशयों पर फ्लोटिंग सौर ऊर्जा के विकास में आने वाली कठिनाइयाँ

फ्लोटिंग सौर सिस्टम का सटीक डिजाइन साइट विशिष्ट होता है जैसे कि पानी के नीचे की मिट्टी की स्थिति, पानी की गहराई, जल स्तर, जल की लहरों की ऊंचाई, जल प्रवाह, अधिकतम हवा की गति, जलाशय के पानी के उपयोग का उद्देश्य और अन्य पर्यावरणीय बाध्यताएं आदि । फ्लोटिंग सौर परियोजनाओं को विकसित करने के लिये वाटर-बेड टोपोग्राफी और फ्लोट्स हेतु मूरिंग केबल स्थापित करने की उपयुक्तता की गहन समझ की आवश्यकता होती है। यह देखा गया है कि अब तक फ्लोटिंग सोलर का विकास मुख्य रूप से कम गहराई वाले सिंचाई, औद्योगिक और खनन तालाब आदि पर हुआ है क्योंकि इन में एंकरिंग और मूरिंग की कम लागत आती है । तथापि जैसा की ऊपर कथित है भारत में तीव्रता से जल विद्युत् परियोजनाओं के जलाशयों में फ्लोटिंग सिस्टम के विकास की योजनाएं तैयार हो रहीं हैं। फ्लोटिंग सौर परियोजना वर्तमान में जमीन आधारित सौर ऊर्जा प्लांट की तुलना में लगभग 20-25% अधिक महंगे होते है। इसका एक कारण यह है कि विशेष रूप से फ्लोटिंग सौर ऊर्जा सिस्टम के घटकों का आयात किया जाता है। फ्लोट्स आमतौर पर उच्च घनत्व पॉलीथीन (एचडीपीई) से बने होते हैं जो कि महंगा और व्यावसायिक रूप से अव्यवहार्य है। अब तक फ्लोट प्रदान करने के लिए केवल कुछ स्थानीय विनिर्माण क्षमताएँ हैं। फ्लोट्स के निर्माण के लिए स्थानीय उप-ठेकेदारों की भी आवश्यकता है। कम परिवहन लागत, स्थानीय विनिर्माण स्विधायें इस नई प्रौद्योगिकी को बढ़ाने की कुंजी है।

आगे बढने का रास्ता

अब चूंकि भारत में फ्लोटिंग सौर ऊर्जा सिस्टम का बाजार बहुत तेजी से आकार ले रहा है, उचित नीति समर्थन के माध्यम से विनिर्माण बाजार न केवल लागत कम करने में मदद करेगा बल्कि स्वदेशी मेक-इन-इंडिया स्थानीय बाजार क्षमताओं को विकसित करने में भी सहायता करेगा। फ्लोटिंग सौर ऊर्जा में इस्तेमाल होने वाले घटकों के घरेलू उत्पादन के लिए टैक्स इंसेंटिव, उपकर और शुल्क में छूट, स्टाम्प शुल्क में रियायत इत्यादि की मंजूरी ज़रूरी है।

"राष्ट्रभाषा किसी व्यक्ति या प्रान्त की सम्पत्ति नहीं है, इस पर सारे देश का अधिकार है।" - सरदार वल्लभ भाई पटेल

"राष्ट्रभाषा किसी व्यक्ति या प्रान्त की सम्पत्ति नहीं, इस पर सारे देश का अधिकार है।" (सरदार वल्लभ भाई पटेल)

भारत का हरित भविष्य

आलोक कुमार, उप-निदेशक

परिचय

स्वच्छ और टिकाऊ वैकल्पिक ईंधन की मांग को देखते हुए ग्रीन हाइड्रोजन को भविष्य के ईंधन के रूप में देखा जा रहा है। हाइड्रोजन सभी गैसों में सबसे हल्की और ब्रह्मांड में सबसे प्रचुर तत्व है। उत्पादन के साधनों के आधार पर हाइड्रोजन को निम्न में वर्गीकृत किया जा सकता है -

- ग्रीन हाइड्रोजन यह नवीकरणीय ऊर्जा (जैसे सौर, पवन) का उपयोग करके पानी के इलेक्ट्रोलिसिस द्वारा निर्मित होता है और इसमें कार्बन फुटप्रिंट कम होता है।
- 2. **ब्राउन हाइड्रोजन** यह कोयले का उपयोग करके उत्पादित किया जाता है जहाँ उत्सर्जन हवा में छोड़ा जाता है।
- ग्रे हाइड्रोजन यह प्राकृतिक गैस से उत्पन्न होता है जहाँ संबंधित उत्सर्जन हवा में छोड़े जाते हैं।
- 4. **ब्लू हाइड्रोजन** यह प्राकृतिक गैस से उत्पन्न होता है, जहाँ कार्बन कैप्चर और स्टोरेज का उपयोग करके उत्सर्जन को कैप्चर किया जाता है।

हरित हाइड्रोजन के अनुप्रयोग

- इसका उपयोग बिजली और पेयजल जनरेटर को चलाने के मिशन पर किया जा सकता है।
- संपीड़ित हाइड्रोजन टैंक लंबे समय तक ऊर्जा भंडारण करने में सक्षम होते हैं और हल्के होने के कारण लिथियम आयन बैटरी की तुलना में संभालना भी आसान होता है।
- 3. इसका उपयोग भारी परिवहन, विमानन और समुद्री परिवहन में ईंधन के रूप में किया जा सकता है, इस

प्रकार परिवहन क्षेत्र को डीकार्बोनाइज़ किया जा सकता है।

हरित हाइड्रोजन का उपयोग ईंधन सेल (Fuel Cell) के माध्यम से बिजली उत्पादन में, रासायनिक फीड स्टॉक के रूप में उपयोग की जाने वाली अमोनिया उत्पादन में, इस्पात निर्माण और पेट्रोलियम रिफाइनरी जैसी औद्योगिक प्रक्रियाओं में किया जा सकता है। अमेरिका, रूस, चीन, फ्रांस और जर्मनी जैसे देश पहले ही ईंधन के रूप में हाइड्रोजन का उपयोग करने के लिए उद्यम कर चुके हैं।

हरित हाइड्रोजन के लाभ

- यह आयात बिल को कम करने में मदद कर सकता है क्योंकि यह जीवाश्म ईंधन का विकल्प हो सकता है और प्रकृति में प्रच्र मात्रा में उपलब्ध है।
- 2. यह पारंपरिक ईंधनों का किफायती विकल्प है।
- 3. हाइड्रोजन की मांग भी 2050 तक चार गुना बढ़ने की उम्मीद है, जो वैश्विक मांग के लगभग 10% का प्रतिनिधित्व करती है, इसे हरित हाइड्रोजन उत्पादन में वृद्धि करके पूरा किया जा सकता है।
- 4. उनकी उच्च दक्षता और शून्य-या लगभग शून्य-उत्सर्जन संचालन के कारण, हाइड्रोजन और ईंधन सेल (फ्यूल सल) में कई अनुप्रयोगों द्वारा ग्रीनहाउस गैस उत्सर्जन को कम करने की क्षमता है।

हरित हाइड्रोजन से संबंधित चिंताएं

- इसका भंडारण और परिवहन कठिन है क्योंकि यह ज्वलनशील है, इसका घनत्व कम है और यह आसानी से फैल जातीहै।
- हरित हाइड्रोजन रंगहीन, गंधहीन व स्वादहीन होने के कारण उसके रिसाव को पहचानना द्साध्य है।

- 3. हिरत हाइड्रोजन के उत्पादन में विशेष रूप से अन्य ईंधनों की तुलना में अधिक ऊर्जा की आवश्यकता होती है। इसके अलावा, इसके उत्पादन में आवश्यक नवीकरणीय ऊर्जा की उपलब्धता मांग के अनुरूप नहीं है।
- हाइड्रोजन अत्यधिक अस्थिर और ज्वलनशील तत्व है और इसलिए रिसाव और विस्फोट को रोकने के लिए व्यापक स्रक्षा उपाय आवश्यक हैं।

सरकार ने ईंधन के रूप में हरित हाइड्रोजन को बढ़ावा देने के लिए विभिन्न उपाय किए हैं

- सरकार द्वारा 2050 तक 5 मिलियन टन ग्रीन हाइड्रोजन के उत्पादन के लक्ष्य के साथ राष्ट्रीय हाइड्रोजन मिशन शुरू किया है।
- भारत में हिरत हाइड्रोजन नीति भी है जो हिरत हाइड्रोजन के उत्पादकों को प्रोत्साहन प्रदान करती है।
 यह विनिर्माण क्षेत्र स्थापित करने का भी प्रस्ताव

करता है जहां हरित हाइड्रोजन उत्पादन संयंत्र स्थापित किया जा सकता है।

निष्कर्ष

हाल ही में आयोजित COP-27 में वैज्ञानिकों के अनुसार 2022 में कार्बन उत्सर्जन में 6% की वृद्धि का अनुमान है। हरित हाइड्रोजन अपनाने से इन उत्सर्जनों को कम करने में मदद मिलेगी। भारत अपने हाल ही में घोषित किये गये जलवायु संरक्षण लक्ष्यों को आगे बढ़ाने और अपने 2070 निवल शून्य कार्बन लक्ष्य को प्राप्त करने के लिए हरित हाइड्रोजन नीति का उपयोग कर सकता है। जलवायु परिवर्तन के खिलाफ भारत की लड़ाई में हरित हाइड्रोजन एक महत्वपूर्ण घटक हो सकता है। हरित हाइड्रोजन में निवेश, अनुसंधान और विकास के साथ-साथ सरकार की नीति, भारत को एक अकार्बनिक विकसित राष्ट्र बनने में मदद कर सकती है।

ऊर्जा भंडारण प्रणाली

मुकेश कुमार, उप निदेशक, एचईटीडी

1. प्रस्तावनाः ऊर्जा संक्रमण

2030 तक, भारत सकल घरेलू उत्पाद की उत्सर्जन तीव्रता को 2005 के स्तर से 45 प्रतिशत तक कम करने और लगभग 50 प्रतिशत संचयी विद्युत ऊर्जा स्थापित क्षमता गैर-जीवाश्म ईंधन-आधारित ऊर्जा संसाधनों से प्राप्त करने के लिए प्रतिबद्ध है। गैर-जीवाश्म ईंधन आधारित ऊर्जा का बहुत बड़ा हिस्सा सौर ऊर्जा और पवन ऊर्जा है, जो ऊर्जा के कार्बन रहित स्रोत हैं। एक बार इतनी बड़ी मात्रा में परिवर्तनीय नवीकरणीय ऊर्जा देश की ऊर्जा संचयिकातंत्र में शामिल हो जाने के बाद, "24x7 पावर-फॉर-ऑल" सुनिश्चित करने के लिए ग्रिड का स्थिर संचालन निश्चित रूप से पहले से कहीं अधिक

चुनौतीपूर्ण होगा। इस प्रकार, परिवर्तनीय प्रकृति के नवीकरणीय ऊर्जा स्रोतों का देश में ग्रिड के साथ सुचारू एकीकरण को सुगम बनाने के लिए ऊर्जा भंडारण प्रणाली (ईएसएस) की आवश्यकता होगी।

केंद्रीय विद्युत प्राधिकरण (के.वि.प्रा.) द्वारा किए गए आंकलन के अनुसार, 2031-32 की अवधि के लिए ऊर्जा की आवश्यकता के लिए मांग का पूर्वानुमान 2409 बिलियन यूनिट्स है और पीक डिमांड के लिए 360 गीगावॉट का अनुमान है । इस ऊर्जा आवश्यकता को सुचारु रूप से पूरा करने के लिए वर्ष 2029-30 के लिए अनुमानित भंडारण आवश्यकता में 24,977 मेगावाट (5-घंटे) बैटरी एनर्जी स्टोरेज सिस्टम (बीईएसएस) और 14,526 मेगावाट पंपड

स्टोरेज प्रोजेक्ट्स (पीएसपी) शामिल हैं। 2031-32 के दौरान भंडारण की आवश्यकता लगभग 70.3 गीगावॉट (18.8 गीगावॉट पम्प्ड स्टोरेज प्रोजेक्ट्स और 51.5 गीगावॉट बीईएसएस) है। इसे देखते हुए वर्ष 2070 तक देश के निवल शून्य उत्सर्जन लक्ष्य प्राप्ति की प्रक्रिया में नवीकरणीय ऊर्जा (आरई) की ऊर्जा प्रणाली में गहरी पैठ के रूप में भंडारण की आवश्यकता में और वृद्धि होगी।

2. ईएसएस की श्रेणियां

उपयोग आधारित

ईएसएस को एक विद्युत प्रणाली पावर सिस्टम तत्व के रूप में नामित किया जाएगा जिसका उपयोग जेनरेटर, संचारण तत्व या वितरण तत्व के रूप में किया जा सकता है । ईएसएस को ग्रिड लचीलापन सेवाएं प्रदान करने की अनुमित दी जाएगी जो आर.ई (R.E) क्षमता में वृद्धि से उत्पन्न होती हैं जैसे कि ग्रिड समर्थन/ सहायक सेवाएं (प्राथमिक आवृति प्रतिक्रिया, माध्यमिक आवृति प्रतिक्रिया, तृतीयक प्रतिक्रिया, वोल्टेज नियंत्रण और ब्लैक स्टार्ट), तेजी से प्रतिक्रिया/ रैंप-अप/ रैंपिंग डाउन और अधिकतम शिफ्टिंग या तो बिना किसी के संयोजन आधार पर या अन्य पावर सिस्टम तत्वों के संयोजन में। ऐसी सहायक सेवाओं के लिए समय अवधि , सेकंड से लेकर मिनटों या घण्टों तक भी हो सकती है।

प्रौद्योगिकी आधारित

कई अलग-अलग प्रकार की ऊर्जा भंडारण प्रौद्योगिकियां हैं, जिन्हें मोटे तौर पर मैकेनिकल, धर्मल, इलेक्ट्रो-केमिकल, इलेक्ट्रिकल और केमिकल स्टोरेज सिस्टम में वर्गीकृत किया गया है। मैकेनिकल स्टोरेज तकनीकों में पंण्ड स्टोरेज प्रोजेक्ट्स, कंप्रेस्ड एयर एनर्जी स्टोरेज और फ्लाई व्हील्स शामिल हैं। इलेक्ट्रो-केमिकल श्रेणी के भीतर, लेड एसिड बैटरी, लीथियम -आयन बैटरी, सोडियम सल्फर बैटरी, फ्लो बैटरी, आदि सबसे आम हैं। धर्मल स्टोरेज में बर्फ आधारित स्टोरेज सिस्टम, गर्म और ठंडा पानी का भंडारण, रॉक स्टोरेज तकनीक शामिल हैं। विद्युत

भंडारण प्रणालियों में सुपर-कैपेसिटर और सुपर-कंडिक्टंग चुंबकीय ऊर्जा भंडारण शामिल हैं, जबिक रासायिनक भंडारण आमतौर पर भंडारण माध्यम के रूप में ग्रीन हाइड्रोजन का उत्पादन करने के लिए इलेक्ट्रोलिसिस का उपयोग करता है जिसे बाद में बिजली [ईंधन सेल (फ्यूल सेल) या इंजनों के माध्यम से], ऊष्मा और परिवहन सहित विभिन्न तरीकों से विद्युत ऊर्जा में परिवर्तित किया जा सकता है।

इन्हें निम्न रूप से नीचे वर्गीकृत किया जा सकता है:

क- वर्तमान में परिपक्व प्रौद्योगिकियां

वर्तमान में, पम्प्ड स्टोरेज प्रोजेक्ट्स और इलेक्ट्रो केमिकल स्टोरेज जैसे लीथियम-आयन आधारित बैटरी ने तकनीक तैयारी स्तर (टेक्नोलॉजी रेडीनेस लेवल) और निर्माण तैयारी स्तर (मैन्युफैक्चिरंग रेडीनेस लेवल) दोनों के संदर्भ में निश्चित परिपक्वता स्तर प्राप्त कर लिया है। पम्प्ड स्टोरेज प्रोजेक्ट्स और लीथियम-आयन आधारित इलेक्ट्रो-केमिकल स्टोरेज बैटरियों के अलावा, अन्य ऊर्जा भंडारण प्रौद्योगिकियां जैसे एनएएस (सोडियम सल्फर), फ्लो बैटरी, कंप्रेस्ड एयर एनर्जी स्टोरेज और फ्लाई व्हील आदि व्यावसायिक तैनाती के प्रारंभिक चरण में हैं।

ख- आगामी प्रौद्योगिकियां

उच्च दक्षता और लम्बी आयु के संबंध में कई अन्य ईएसएस प्रौद्योगिकियों में महत्वपूर्ण तकनीकी प्रगति देखी गई है । उदाहरण के लिए तरल धातु और निकल-आइरन आशा जनक परिणाम दिखाते हैं । कई देशों में ग्रेविटी स्टोरेज तकनीकों का भी पता लगाया जा रहा है लेकिन निर्माण की तैयारी अभी स्थापित की जानी है । अन्य उभरती प्रौद्योगिकियां जैसे कि ग्रीन हाइड्रोजन भंडारण, जो अपेक्षाकृत तेजी से रैंप अप और रैंप डाउन करने में सक्षम हैं और लंबी अविध के लिए उच्च दक्षता के साथ ऊर्जा का भंडारण करती हैं, देश में ऊर्जा भंडारण की मांग

को पूरा करने के लिए एक और विकल्प हो सकती हैं।

उभरती प्रौद्योगिकियों द्वारा ऊर्जा भंडारण की लागत अभी भी अधिक है। बड़े पैमाने पर वाणिज्यिक तैनाती को सक्षम करने के लिए प्रौद्योगिकी और उत्पादन प्रक्रियाओं के और अधिक अनुकूलबनाने की जरूरत है. ये भविष्य के लिए दीर्घकालिक अनुसंधान और विकास पर ध्यान केंद्रित कर सकते हैं और इसके लिए शिक्षाविदों और उद्योग के बीच सहयोग की आवश्यकता होगी।

3. मौजूदा संसाधनों का उपयोग

पूरी तरह से दोहन की जा च्की खानें/ सपाट की गयी प्रानी खानें , जल-विद्युत परियोजनाओं के मौजूदा जलाशयों के बीच के हिस्से, थर्मल उत्पादन स्टेशनों की वो पारेषण लाइनें, स्विचयार्ड आदि, जिनके पूरी आर्थिक और उपयोगी आयु बीतने से अन्पयोगी बन चुके है, ईएसएस की स्थापना के लिए लाभप्रद संसाधन बन सकते हैं। दुनिया के विभिन्न देशों जैसे संयुक्त राज्य अमेरिका, जर्मनी, चीन, ऑस्ट्रेलिया आदि ने पीएसपी के विकास के लिए प्रानी खानों के उपयोग में लाये जाने के मामले का अध्ययन किया है। जर्मनी में प्रॉस्पर-हनील हार्ड कोल माइन पर 200 मेगावाट क्षमता की पीएसपी और ऑस्ट्रेलिया में प्रानी किडस्टन गोल्ड माइन पर 250 मेगावाट क्षमता की किडस्टन पंप स्टोरेज हाइड्रो प्रोजेक्ट के निर्माणाधीन होने की जानकारी है। इसके अलावा, लुईस रिज क्लोज्ड लूप पंपेड हाइड्रो पावर स्टोरेज प्रोजेक्ट (200 मेगावाट) को 2030 तक केंट की, संयुक्त राज्य अमेरिका में छोड़ी गई कोयला पट्टी खदान पर विकसित करने की योजना है। इन नियोजित स्थलों के अलावा, कई अन्य स्थल विभिन्न देशों में अध्ययन/ विकास के विभिन्न चरणों में हैं।

देश के विभिन्न हिस्सों में कोयला खदानों (वर्तमान में ऐश बैक-फिलिंग के लिए चिन्हित नहीं) सहित खारिज की गई खदानों को पम्प्ड स्टोरेज के रूप में इस्तेमाल किया जा सकता है और इस तरह पम्प्ड स्टोरेज प्रोजेक्ट्स के विकास के लिए प्राकृतिक संबल बन सकते हैं। इसके अलावा, खनन के लिए पहचानी गई नई खानों में खनन के लिए छोड़े जाने के चरण में उपयोग के लिए खोजे गए व्यवहार्य विकल्प के रूप में पीएसपी का विकास हो सकता है, और इसे उनकी खदान बंद करने की योजना के तहत अन्मोदित किया जा सकता है। चूंकि कोयला खदानें काफी हद तक केंद्रीय सार्वजनिक क्षेत्र इकाई (सीपीएसयू) यानी कोल इंडिया लिमिटेड और उसकी सहायक कंपनियों के दायरे में हैं, हाइड्रो पावर सेक्टर के सीपीएसयू को संभावित और व्यवहार्य स्थलों की खोज और तेजी से विकास के लिए कोयला क्षेत्र के सीपीएसयू के साथ संयुक्त उद्यम बनाने के लिए प्रोत्साहित किया जा सकता है।

4. ईएसएस के प्रचार के लिए सहायता - पायलट परियोजना

भंडारण प्रौद्योगिकियों के लिए देश में पायलट प्रदर्शन परियोजनाएं शुरू की जा सकती हैं, और इसके लिए उन्नत रसायन विज्ञान सेल, तरल धातु और निकल-आइरन, कंप्रेस्ड वायु ऊर्जा भंडारण, फ्लाई व्हील, ग्रेविटी स्टोरेज तकनीक, ग्रीन हाइड्रोजन आदि का चुनाव किया जा सकता है, जिन्हें बड़े पैमाने पर व्यावसायिक तैनाती प्राप्त करना बाकी है। सरकार अपने प्रशासनिक नियंत्रण के तहत केंद्रीय/ राज्य सार्वजनिक इकाइयों को अलग-अलग संचालन वातावरण के तहत विभिन्न स्थानों पर उपयुक्त क्षमताओं के लिए ऐसी प्रौद्योगिकी प्रदर्शन परियोजनाओं को लेने की सलाह दे सकती है।

5. ऊर्जा भंडारण दायित्व

केंद्रीय विद्युत प्राधिकरण के परामर्श से ऊर्जा मंत्रालय, भारत सरकार द्वारा ऊर्जा भंडारण दायित्व

के लिए एक दीर्घकालिक पथ निर्धारित किया गया है। जिसके तहत ऐसे संसाधनों की उपलब्धता को ध्यान में रखते हुए और ग्रिड स्थिरता आवश्यकताओं को पूरा करने के लिए, ईएसएस से नवीकरणीय ऊर्जा की खरीद के लिए बिजली वितरण लाइसेंसधारी के क्षेत्र में बिजली की कुल खपत का न्यूनतम प्रतिशत उपयुक्त आयोग तय करेगा । ईएसएस से नवीकरणीय ऊर्जा की खरीद भी नवीकरणीय खरीद दायित्व (आरपीओ) अनुपालन के लिए योग्य होगी। सरकार ईएसएस को नियोजन का एक तत्व मानते हुए संसाधन पर्याप्तता योजना (आरएपी) तैयार करने के लिए दिशा-निर्देश तैयार कर सकती है।

6. स्टेशनरी स्टोरेज बैटरी सेल के निर्माण में स्वदेशी तकनीक को बढ़ावा देना

भारत सरकार की उत्पादन से जुड़ी प्रोत्साहन योजना के अंतर्गत स्टेशनरी स्टोरेज बैटरी सेल के निर्माण में स्वदेशी तकनीक को बढ़ावा दिया जा सकता है जिससे आयात पर निर्भरता कम की जा सके और देश को स्वावलंबी बनाया जा सके । इससे देश को कम लागत पर बैटरी की उपलब्धता का भी फायदा होगा ।

7. कर व्यवस्था में ईएसएस के लिए सुधार

ईएसएस से सम्बंधित उपकरणों पर माल और सेवा कर में कमी, भूमि पर स्टाम्प शुल्क और पंजीकरण शुल्क में छूट, राजकीय भूमि पर वार्षिक लीज रेंट के आधार पर रियायती दर इत्यादि जैसे उपाय उठाये जाने चाहिये जिससे परियोजनाओं को कम लागत में बनाकर जल्दी से प्रचालन में लाया जा सके।

8. प्रोजेक्ट बनाने के लिए अनुमित प्रक्रिया में सुधार विस्तृत परियोजना रिपोर्ट की सहमिति, पर्यावरण व वन मंजूरी इत्यादि अनुमित को सरलीकृत करना होगा जिससे परियोजनाओं को समय पर संचालित किया जा सके।

9. नदी से दूर पीएसपी को सुगम बनाना

नदी से दूर पीएसपी के प्रकार

- a. नदी से दूर मुक्त चक्र (ओपन लूप) पीएसपी -ऐसा प्रकार जिसमें सभी नवनिर्मित घटक (कम से कम एक जलाशय सिहत) नदी की धारा से दूर स्थित हैं और मौजूदा जलाशयों में से एक का उपयोग कर रहे हैं जो नदी की धारा पर हो सकती हैं।
- b. नदी से दूर बंद चक्र (क्लोज्ड लूप) पीएसपी -ऐसा प्रकार जिसमें ऊपरी और निचले दोनों जलाशयों पर जो नए बनाए जाने हैं, प्राकृतिक नदी के जलमार्ग से दूर हैं।

उपरोक्त पीएसपी के अनेक फायदे हैं जैसे अनुदेध्यं संयोजकता और ई-प्रवाह की आवश्यकता का न होना, वन, पर्यावरण तथा पुनर्वास और पुनर्स्थापन (आर एंड आर) मुद्दे का न्यूनतम प्रभाव, कम अवधि, कम लागत इत्यादि। इस प्रकार, इन को एक अलग श्रेणी के रूप में माना जाना चाहिए और तेजी से कार्यान्वयन और कम बिजली लागत जैसे लाभों के लिए प्राथमिकता दी जानी चाहिए।

पर्यावरण मंजूरी का सरलीकरण, के.वि.प्रा. द्वारा राष्ट्रीय संसाधन पहचान/ संभावित मूल्यांकन, अवक्रमित वन भूमि की अनुमित प्रतिपूरक वनीकरण, वन भूमि के इस्तेमाल के लिए देय राशि दर में कमी जैसे उपाय उठाये जाने चाहिये जिस से परियोजनाओं को कम लागत पर जल्दी कार्यान्वयन में लाया जा सके।

10.डिमांड रिस्पांस मैनेजमेंट के लिए स्टोरेज का उपयोग

डिमांड रिस्पांस मैनेजमेंट का उपयोग कुछ इलेक्ट्रिक सिस्टम प्लानर्स और ऑपरेटरों द्वारा आपूर्ति और मांग को संतुलित करने के लिए संसाधन विकल्प के रूप में किया जा रहा है। उपयुक्त आयोग वितरित ऊर्जा भंडारण प्रणालियों जैसे इलेक्ट्रिक वाहन बैटरी, एकीकृत बैटरी स्टोरेज के साथ रूफ टॉप सोलर आदि

की तैनाती को प्रोत्साहित करने के लिए नियम बना सकते हैं।

वितरण क्षेत्र में 'वितरित प्रणाली ऑपरेटर' की व्यवस्था की जा सकती है जो छोटे से बड़े प्रतिष्ठानों से ईएसएस खरीदकर और उन्हें एकीकृत कर वितरण या उच्च ग्रिड स्तर के सुचारु परिचालन में उचित योगदान दे सकती है।

11.निष्कर्ष

देश में ईएसएस के विकास में तेजी लाने और प्रोत्साहित करने के लिए, दोनों परिपक्व प्रौद्योगिकियों के साथ-साथ आगामी आशा जनक प्रौद्योगिकियों की पहचान और त्वरण करने की रणनीति बनानी होगी। हितधारकों के अनुकूल योजनाओं, छूट या प्रोत्साहन के माध्यम से निवेश को आमंत्रण और बढ़ावा दिया जाना चाहिए।

बांध सुरक्षा अधिनियम, 2021 का सिंहावलोकन

सरबजीत सिंह बख्शी

निदेशक, बांध सुरक्षा निगरानी निदेशालय, केंद्रीय जल आयोग, नई दिल्ली

1.0 परिचय

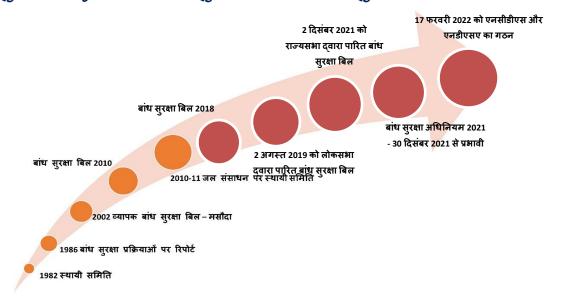
बड़े बांधों की संख्या के मामले में भारत, अमेरिका और चीन के बाद द्निया में तीसरे स्थान पर है। केंद्रीय जल आयोग द्वारा संकलित बड़े बांधों के राष्ट्रीय रजिस्टर (2019) के अन्सार, भारत में 5334 परिचालन योग्य बड़े बांध हैं और ऐसे 411 बांध निर्माणाधीन हैं। इनमें से लगभग 98% बांधों का स्वामित्व राज्य सरकारों के पास है, जबकि शेष का स्वामित्व केंद्रीय और राज्य सार्वजनिक क्षेत्र की यूटिलिटीज और निजी एजेंसियों के पास है। इनमें से लगभग 80% बांध 25 वर्ष से अधिक प्राने हैं और 227 बांध 100 वर्ष से अधिक प्राने हैं। इन बांधों के निर्माण में भारी निवेश किया गया है जिसमें सामाजिक और पर्यावरणीय लागत के संदर्भ में पर्याप्त निवेश भी शामिल है। इन संपत्तियों से परिकल्पित परिचालन लाओं को मूर्त रूप प्रदान करने के लिए इन संपत्तियों का दीर्घकालिक रखरखाव अत्यंत आवश्यक है।

भारत में बांधों की सुरक्षा सुनिश्चित करना मुख्य रूप से बांध स्वामियों की जिम्मेदारी है। बांधों के स्वामित्व वाली केंद्रीय और राज्य एजेंसियां एवं

अन्य संगठन बांध निर्माण के विभिन्न चरणों यथा स्थापना से चालू किए जाने तक एवं संचालन और रखरखाव सहित सभी कार्यकलापों में कार्यरत होती रही हैं। हालांकि, वितीय और संस्थागत बाधाओं के कारण, राज्य अपने स्रक्षित कामकाज को स्निश्चित करने और समान बांध स्रक्षा प्रक्रियाओं को स्निश्चित करने के लिए उचित निगरानी, निरीक्षण, संचालन और रखरखाव की आवश्यकता को पूरा करने में सक्षम नहीं हो पाते। यद्यपि, बांध स्रक्षा की प्रक्रियाएँ एक राज्य से दूसरे राज्यों और एक संगठन से दूसरे संगठनों में भिन्न होती हैं, तथापि केंद्र सरकार, बांध स्रक्षा की एकीकृत प्रक्रियाओं को विकसित करने की दिशा में वर्षों से काम कर रही है और सभी राज्यों और बांध मालिकों द्वारा कार्यान्वयन के लिए अपनी सिफारिशें भी प्रदान की हैं। इस दिशा में पहली बार वर्ष 1979 में एक पहल की शुरूआत हुई, जब केंद्रीय जल आयोग में बांध स्रक्षा संगठन की स्थापना की गई।

बांधों की सुरक्षा के महत्व को ध्यान में रखते हुए, केंद्र सरकार ने मौजूदा प्रक्रियाओं की समीक्षा करने और देश में बांधों की सुरक्षा के लिए एकीकृत

विद्युत वाहिनी तृतीय अंक (जल-विद्युत विशेषांक) केन्द्रीय विद्युत प्राधिकरण अप्रैल 2023 याओं को विकसित करने के लिए केंद्रीय जल 2.0 पृष्ठभूमि


प्रक्रियाओं को विकसित करने के लिए केंद्रीय जल आयोग के अध्यक्ष की अध्यक्षता में वर्ष 1982 में एक स्थायी समिति का गठन किया।

स्थायी समिति ने 10 ज्लाई, 1986 की अपनी रिपोर्ट में देश के सभी बांधों के लिए एकीकृत बांध सुरक्षा प्रक्रियाओं और बांध सुरक्षा पर कानून की आवश्यकता की सिफारिश की। अध्यक्ष, सीडब्ल्यूसी की अध्यक्षता में बांध सुरक्षा पर राष्ट्रीय समिति (एनसीडीएस) के नाम से, अक्टूबर 1987 में एक व्यापक प्रतिनिधित्व और एक केंद्रित जनादेश के साथ स्थायी समिति का प्नर्गठन किया गया था। समिति में केंद्र सरकार और प्रमुख बांध स्वामित्व वाले राज्यों का प्रतिनिधित्व था। इसमें बांध स्रक्षा के क्षेत्र के विशेषज्ञ भी शामिल थे। इस समिति ने बांध सुरक्षा से संबंधित विभिन्न मामलों पर विचारों के आदान-प्रदान के लिए एक मंच के रूप में कार्य किया। एनसीडीएस ने बांध स्रक्षा की सर्वोत्तम प्रक्रियाओं और मानकों को बनाए रखने के लिए बांध स्रक्षा नीतियों और विनियमों को तैयार करने की दिशा में काम किया, ताकि किसी भी बांध स्रक्षा संबंधी आपदाओं को रोका जा सके। प्रमुख ऐतिहासिक बांध की घटनाओं और बांध की विफलताओं के कारणों का विश्लेषण करके योजना, विनिर्देशों, निर्माण और संचालन और रखरखाव प्रक्रियाओं में परिवर्तनों को विकसित करने और स्झाव देने के लिए समिति को आदेश दिया गया था। तब से केंद्रीय जल आयोग और एनसीडीएस, देश में बड़े बांधों की स्रक्षा स्थितियों में स्धार के लिए लगातार प्रयास कर रहे हैं। हालाँकि, वैधानिक बैकअप के अभाव में, इन संस्थाओं की भूमिका केवल सलाहकारी ही रहीं, जिनके पास अपनी सिफारिशों को लागू करने की कोई शक्ति नहीं थी।

स्थायी समिति ने जुलाई, 1986 में "बांध सुरक्षा प्रिक्रियाओं पर रिपोर्ट" शीर्षक वाली अपनी रिपोर्ट में बांध सुरक्षा कानून के अधिनियमन की सिफारिश के साथ राज्यों और केंद्र के स्तर पर बांध सुरक्षा के लिए संस्थागत व्यवस्था का सुझाव दिया।

तदनुसार, वर्ष 2002 में बांध सुरक्षा विधेयक का एक व्यापक मसौदा तैयार किया गया और राज्य सरकारों को इस मसौदे पर अपने विचार प्रकट करने हेत् इसे परिचालित किया गया। संबंधित राज्य सरकारों द्वारा उपयुक्त कानून बनाने के लिए बांध सुरक्षा विधेयक के मुख्य रूप से प्रारंभिक प्रयासों को निर्देशित किए गए थे। तदन्सार, बिहार राज्य ने बांध स्रक्षा अधिनियम, 2006 को अधिनियमित किया। हालांकि, कुछ राज्यों ने बांध सुरक्षा पर एक समान केंद्रीय कानून के विचार का समर्थन किया। आंध्र प्रदेश राज्य और पश्चिम बंगाल राज्य ने अपने राज्यों में संसद के एक अधिनियम के लिए संकल्प को अपनाया। तदनुसार, बांध सुरक्षा विधेयक, 30 अगस्त, 2010 को लोकसभा में पेश किया गया था, जिसे बाद में जांच के लिए जल संसाधन संबंधी संसदीय स्थायी समिति को भेजा गया।

संसदीय स्थायी समिति ने बांध सुरक्षा विधेयक, 2010 पर अपनी सिफारिशें प्रस्तुत कीं। संसदीय स्थायी समिति की सिफारिशों का अनुपालन करते हुए विधेयक में किए गए महत्वपूर्ण परिवर्तनों/संशोधनों के कारण, जल संसाधन मंत्रालय ने विधेयक को वापस लेने और संशोधित विधेयक को संसद में प्रस्तुत करने का निर्णय लिया।

चित्र 1: बांध स्रक्षा अधिनियम के अधिनियमन का रोडमैप

बांध स्रक्षा विधेयक, 2010 पर संसदीय स्थायी समिति की सिफारिशों को शामिल करते हुए और पूरे भारत में कवरेज के लिए बांध स्रक्षा विधेयक, 2018 तैयार किया गया और इसे लोकसभा में पेश किया गया। हालाँकि, 16 वीं लोकसभा के विघटन के साथ ही बांध स्रक्षा विधेयक, 2018 समाप्त हो गया। बांध स्रक्षा बिल, 2019 को लोकसभा में 2 अगस्त, 2019 को और राज्यसभा में 2 दिसंबर, 2021 को पारित किया गया। संसद का बांध स्रक्षा अधिनियम, 2021 (2021 की संख्या 41) को 13 दिसंबर, 2021 को राष्ट्रपति की सहमति प्राप्त हुई और इसे 14 दिसंबर, 2021 के राजपत्र में अधिस्चित किया गया है। इस अधिनियम और इसके प्रावधान 30 दिसंबर, 2021 से प्रभावी हो गए हैं। बांध स्रक्षा अधिनियम के अधिनियमन का रोडमैप चित्र-1 में दर्शाया गया है।

प्रस्तावना के अनुसार, इस अधिनियम में बांधों की विफलता से संबंधित आपदाओं की रोकथाम हेतु निर्दिष्ट बांध की निगरानी, निरीक्षण, परिचालन और रखरखाव किया गया है साथ ही बांधों के सुरक्षित कार्यव्यापार को सुनिश्चित करने के लिए और उससे संबद्ध या प्रासंगिक मामलों के लिए एक संस्थागत प्रणाली प्रदान किया गया है। यह अधिनियम पूरे भारत को समाहित करता है। इसमें बांधों के सुरक्षित कामकाज को सुनिश्चित करने के लिए केंद्र और राज्य सरकार दोनों स्तरों पर एक संस्थागत प्रणाली का प्रावधान है।

3.0 अधिनियम के प्रम्ख प्रावधान

बांध स्रक्षा अधिनियम, 2021 में 11 अध्याय, 56 धाराएं और 3 अन्सूचियां हैं। यह अधिनियम प्रत्येक निर्दिष्ट बांध, जो सार्वजनिक क्षेत्र का उपक्रम या संस्थान या केंद्र सरकार या राज्य सरकार या संयुक्त रूप से एक या अधिक सरकारों के स्वामित्व या नियंत्रण में है, जैसा भी मामला हो, और राज्य सरकार या केंद्र सरकार, जैसा भी मामला हो, के स्वामित्व या नियंत्रण के अलावा एक उपक्रम या कंपनी या संस्था या निकाय के स्वामी पर लागू होता है। अध्याय-1 के तहत, अधिनियम में प्रयुक्त क्छ शब्दावलियों को परिभाषित किया गया है जिनमें अन्य बातों के साथ-साथ शामिल हैं- बांध, संलग्न संरचना, निर्दिष्ट बांध, निर्दिष्ट बांध के स्वामी, संकट की स्थिति, बांध की घटना, बांध की विफलता, बांध स्रक्षा इकाई, प्रलेखन, निरीक्षण और जांच।

3.1 निर्दिष्ट बांध

अधिनियम के अनुसार, "निर्दिष्ट बांध" का अर्थ इस अधिनियम के प्रारंभ होने से पहले या बाद में निर्मित एक बांध है, जो है;

- i) ऊंचाई में पंद्रह मीटर से ऊपर, जिसे सामान्य नींव क्षेत्र के सबसे निचले हिस्से से बांध के शीर्ष तक मापा जाता है; या
- ii) दस मीटर से पंद्रह मीटर की ऊंचाई के बीच और निम्नलिखित में से कम से कम एक प्रावधान को पूरा करता है, अर्थात्:
 - क) क्रेस्ट की लंबाई पांच सौ मीटर से कम नहींहै; या
 - ख) बांध द्वारा निर्मित जलाशय की क्षमता दस लाख घन मीटर से कम नहीं है; या
 - ग) बांध द्वारा अधिकतम बाढ़ निर्वहन दो हजार घन मीटर प्रति सेकंड से कम नहीं है; या
 - घ) बांध में विशेष रूप से कठोर नींव की समस्याएं हैं; या
 - ङ) बांध असामान्य डिजाइन का है;

3.2 संस्थागत प्रणाली

बांध सुरक्षा अधिनियम, 2021 में निम्नवत तत्वों का प्रावधान है:

i) केंद्रीय जल आयोग के अध्यक्ष की अध्यक्षता में बांध सुरक्षा पर राष्ट्रीय समिति (एनसीडीएस) का गठन और अधिनियम की पहली अनुसूची में विनिर्दिष्ट ऐसे कार्यों का निर्वहन, जो बांध की विफलता से संबंधित आपदाओं को रोकने और बांध सुरक्षा के मानकों को बनाए रखने के लिए आवश्यक हो सकते हैं। बांध सुरक्षा संबंधी राष्ट्रीय समिति का गठन, कार्य और कार्यप्रणाली का विवरण इस अधिनियम के अध्याय-॥ में दिया गया है।

- ii) राष्ट्रीय बांध सुरक्षा प्राधिकरण (एनडीएसए) की स्थापना जिसका उद्देश्य अधिनियम की दूसरी अनुसूची में विनिर्दिष्ट ऐसे कार्यों का निर्वहन करना है, जो निर्दिष्ट बांधों की उचित निगरानी, निरीक्षण और रखरखाव के लिए राष्ट्रीय समिति द्वारा विकसित नीति, दिशानिर्देशों और मानकों को लागू करने के लिए आवश्यक हो सकते हैं। राष्ट्रीय बांध सुरक्षा प्राधिकरण की स्थापना, कार्य और कार्यप्रणाली का विवरण इस अधिनियम के अध्याय-॥ में दिया गया है।
- iii) राज्य सरकारों द्वारा बांध सुरक्षा संबंधी राज्य सिमिति (एससीडीएस) का गठन जिसका उद्देश्य तीसरी अनुसूची में विनिर्दिष्ट ऐसे कार्यों का निर्वहन करना है जो प्राधिकरण द्वारा जारी दिशानिर्देशों, मानकों और अन्य निर्देशों के अनुसार इस अधिनियम के तहत बांध विफलता संबंधी आपदाओं को रोकने के लिए आवश्यक हो सकते हैं। बांध सुरक्षा संबंधी राज्य सिमिति का गठन, कार्य और कार्यप्रणाली का विवरण इस अधिनियम के अध्याय-IV में दिया गया है।
- iv) राज्य सरकारों द्वारा विशिष्ट बांधों वाले राज्य बांध सुरक्षा संगठन (एसडीएसओ) की स्थापना, जो बांधों की सुरक्षा से संबंधित विभिन्न क्षेत्रों में पर्याप्त अनुभव वाले अधिकारियों द्वारा संचालित होंगे। राज्य बांध सुरक्षा संगठन का विवरण अधिनियम के अध्याय-V में दिया गया है।

3.3 बांध सुरक्षा के संबंध में कर्तव्यों और कार्यों का विवरण

बांध सुरक्षा के संबंध में कर्तव्यों और कार्यों को अधिनियम के अध्याय VI में विभिन्न धाराओं के तहत प्रस्तृत किया गया है। बांध स्वामी और राज्य

बांध सुरक्षा संगठन के चुनिंदा कर्तव्यों और कार्यों का विवरण निम्नवत है-

- i) प्रत्येक एसडीएसओ ऐसे निर्दिष्ट बांधों की निरंतर सुरक्षा सुनिश्चित करने के लिए अपने अधिकार क्षेत्र में आने वाले सभी निर्दिष्ट बांधों की निरंतर निगरानी करेगा, निरीक्षण करेगा और संचालन और रखरखाव की निगरानी करेगा और आवश्यक उपाय करेगा ताकि नियमों द्वारा निर्दिष्ट किए जा सकने वाले बांध सुरक्षा पर ऐसे दिशानिर्देशों, मानकों और अन्य निर्देशों के अनुसार बांध सुरक्षा आश्वासन के संतोषजनक स्तर को प्राप्त करने की दृष्ट से व्याप्त सुरक्षा चिंताओं को दूर किया जा सके।
- ii) एसडीएसओ प्रत्येक बांध को अपने अधिकार क्षेत्र के तहत इस तरह की भेद्यता और खतरे के वर्गीकरण मानदंड के अनुसार वर्गीकृत करेगा जैसा कि विनियमों द्वारा निर्दिष्ट किया गया है।
- iii) प्रत्येक एसडीएसओ अपने अधिकार क्षेत्र के तहत प्रत्येक निर्दिष्ट बांध के लिए एक लॉग बुक या डेटाबेस का अनुरक्षण करेगा, जिसमें निगरानी और निरीक्षण से संबंधित सभी गतिविधियों और बांध सुरक्षा से संबंधित सभी महत्वपूर्ण घटनाओं और इस तरह के विवरण के साथ और इस तरह के प्रारूप में रिकॉर्ड करेगा, जैसा कि विनियम में निर्दिष्ट हो। एनडीएसए द्वारा जब भी आवश्यक हो, एसडीएसओ ऐसी सभी जानकारी प्रस्तुत करेगा।
- iv) प्रत्येक एसडीएसओ अपने अधिकार क्षेत्र के तहत किसी भी बांध के विफल होने की घटना की सूचना एनडीएसए को देगा, और एनडीएसए द्वारा मांगे जाने पर, कोई भी जानकारी एसडीएसओ द्वारा प्रस्तुत की

- जाएगी. प्रत्येक एसडीएसओ अपने अधिकार क्षेत्र के अंतर्गत प्रत्येक निर्दिष्ट बांधों की प्रमुख बांध घटनाओं का रिकॉर्ड बनाए रखेगा, और ऐसी सभी जानकारी जब भी आवश्यक हो, एनडीएसए को प्रस्तुत करेगा।
- v) प्रत्येक एसडीएसओ, सुरक्षा या इसके संबंध में किए जाने वाले आवश्यक उपचारात्मक उपायों पर निर्दिष्ट बांध के स्वामी को निर्देश देगा। निर्दिष्ट बांध का प्रत्येक स्वामी, एसडीएसओ द्वारा जारी निर्देशों का अनुपालन करेगा।
- vi) निर्दिष्ट बांध का प्रत्येक मालिक निर्दिष्ट बांध के रखरखाव और मरम्मत के लिए और एसडीएसओ की सिफारिशों को लागू करने के लिए पर्याप्त और विशिष्ट धनराशि का निर्धारण करेगा।
- vii) निर्दिष्ट बांध का प्रत्येक स्वामी, बांध की विफलता के कारण प्रभावित होने वाले आर्थिक, लॉजिस्टिक या पर्यावरणीय महत्व के सभी संसाधनों या सुविधाओं के बारे में जानकारी के साथ-साथ जल विज्ञान, बांध की नींव, बांध की संरचनात्मक अभियांत्रिकी, बांध के अपस्ट्रीम वाटरशेड और बांध के डाउनस्ट्रीम भूमि की प्रकृति या उपयोग से संबंधित सभी तकनीकी दस्तावेजों को संकलित करेगा। निर्दिष्ट बांध का प्रत्येक स्वामी ऐसी सभी जानकारी एसडीएसओ और एनडीएसए को उनके द्वारा मांगे जाने पर प्रस्तुत करेगा।
- viii) निर्दिष्ट बांधों की सुरक्षा और उससे संबंधित सभी गतिविधियों के लिए जिम्मेदार प्रत्येक व्यक्ति के पास ऐसी योग्यताएं और अनुभव का होना आवश्यक होगा और ऐसा प्रशिक्षण प्राप्त करना होगा जो विनियमों द्वारा निर्दिष्ट किया गया हो।

- x) इस अधिनियम के प्रावधानों पर प्रतिकूल प्रभाव डाले बिना, बांध निरीक्षण, सूचना के विश्लेषण, जांच रिपोर्ट या सुरक्षा स्थिति के बारे में सिफारिशों और बांध सुरक्षा में सुधार के लिए किए जाने वाले उपचारात्मक उपायों से संबंधित मामलों में; सभी निर्दिष्ट बांध उस राज्य के एसडीएसओ के अधिकार क्षेत्र में आएंगे, जिस राज्य में ऐसे बांध स्थित हैं, और ऐसे सभी मामलों में, निर्दिष्ट बांध के स्वामी द्वारा पूर्ण सहयोग प्रदान किया जाएगा:
 - क) परंतु कि जहां एक निर्दिष्ट बांध एक केंद्रीय सार्वजनिक क्षेत्र के उपक्रम के स्वामित्व में हो या जहां एक निर्दिष्ट बांध दो या दो से अधिक राज्यों में फैला हो, या जहां एक राज्य में निर्दिष्ट बांध दूसरे राज्य के स्वामित्व में हो, तो अधिनियम के प्रयोजनों के लिए एनडीएसए को एसडीएसओ माना जाएगा:
 - ख) परंतु यह और कि ऐसे सभी बांधों के लिए जहां एनडीएसए एसडीएसओ की भूमिका निभाता है, राज्यों की सरकारें जिनके अधिकार क्षेत्र में ऐसे बांध स्थित हैं, एनडीएसए के पास उपलब्ध इन निर्दिष्ट बांधों से संबंधित सभी सूचनाएँ प्राप्त कर सकेगी।
- x) किसी सलाहकार या विशेषज्ञ को दिए गए भुगतान सिहत किसी भी प्रकार की जांच पर एनडीएसए या एसडीएसओ द्वारा खर्च की जाने वाली सभी लागतें निर्दिष्ट बांध के मालिक द्वारा वहन की जाएंगी।
- xi) किसी निर्दिष्ट बांध का कोई भी निर्माण या परिवर्तन एनडीएसए या राज्य सरकार, जैसा भी मामला हो, दवारा मान्यता प्राप्त ऐसी

- एजेंसियों द्वारा की जाने वाली जांच, डिजाइन और निर्माण के उपरांत किया जाएगा। परंतु यह कि एनडीएसए किसी भी एजेंसी को अयोग्य घोषित कर सकता है जो अधिनियम या उसके तहत बनाए गए नियमों या विनियमों के किसी भी प्रावधान का उल्लंघन करती है।
- xii) किसी निर्दिष्ट बांध के किसी भी जलाशय को प्रारंभिक रूप से भरने से पहले, इसके डिजाइन के लिए जिम्मेदार एजेंसी जलाशय को भरने के मानदंड तैयार करेगी और बांध और उससे ज्ड़ी संरचनाओं के निष्पादन की निगरानी और मूल्यांकन के लिए पर्याप्त समय के साथ-साथ जलाशय को प्रारंभिक रूप से भरने की एक योजना तैयार करेगी। जलाशय को प्रारंभिक रूप से भरने से पहले, एसडीएसओ अपने स्वयं के अभियंताओं या विशेषज्ञों के एक स्वतंत्र पैनल द्वारा निर्दिष्ट बांध का निरीक्षण करेगा या निरीक्षण करवाएगा जो प्रारम्भिक भरण कार्यक्रम की भी जांच करेगा और बाँध के भरने की उपयुक्तता को विधिवत प्रमाणित करते हुए विस्तृत रिपोर्ट तैयार करेगा।
- xiii) निर्दिष्ट बांध का प्रत्येक स्वामी निर्दिष्ट बांध के लिए संचालन और रखरखाव की व्यवस्था करेगा, और यह सुनिश्चित करेगा कि ऐसे प्रत्येक बांध पर पर्याप्त संख्या में प्रशिक्षित संचालन और रखरखाव इंजीनियर या तकनीकी व्यक्ति तैनात हैं। निर्दिष्ट बांध का प्रत्येक स्वामी यह सुनिश्चित करेगा कि एक अच्छी तरह से प्रलेखित संचालन और रखरखाव मैनुअल निर्दिष्ट बांधों में से प्रत्येक पर रखा जाए और हर समय उसका पालन
- xiv) इस अधिनियम में अंतर्निहित ऐसा कोई भी प्रावधान नहीं है, जिससे बांध या जलाशय के

निर्माण, संचालन, रखरखाव और पर्यवेक्षण हेतु कर्तव्यों, दायित्वों या देनदारियों से एक निर्दिष्ट बांध के स्वामी को विमुक्त किया जा सके।

3.4 सुरक्षा, निरीक्षण और डेटा संग्रह

अधिनियम के अध्याय VII में सुरक्षा, निरीक्षण और डेटा संग्रह से संबंधित प्रावधान शामिल हैं। उनमें से प्रावधानों का चयन कर यहां लाया गया है:

- i) प्रत्येक विनिर्दिष्ट बांध के लिए, मालिक, संचालन और रखरखाव प्रतिष्ठान के भीतर, ऐसे सक्षम स्तर के इंजीनियरों से मिलकर एक बांध सुरक्षा इकाई प्रदान करेगा जैसा कि विनियमों द्वारा विनिर्दिष्ट किया गया है।
- ii) विनिर्दिष्ट बांध का प्रत्येक मालिक अपनी बांध सुरक्षा इकाई के माध्यम से हर साल ऐसे प्रत्येक बांध के संबंध में मानसून पूर्व और मानसून के बाद निरीक्षण करेगा। इसके प्रति बिना किसी पूर्वाग्रह के प्रत्येक बाढ़, भूकंप या किसी अन्य प्राकृतिक या मानव निर्मित आपदाओं के दौरान और बाद में, या यदि संकट या असामान्य व्यवहार का कोई संकेत बांध में देखा जाता है, तो विनिर्दिष्ट बांध का प्रत्येक मालिक बांध सुरक्षा इकाई द्वारा प्रत्येक विनिर्दिष्ट बांध का निरीक्षण करेगा या निरीक्षण करवाएगा।
- iii) विनिर्दिष्ट बांध के प्रत्येक मालिक के पास प्रत्येक विनिर्दिष्ट बांध पर ऐसे उपकरणों की न्यूनतम संख्या होनी चाहिए, और वह इस तरह से स्थापित किया होना चाहिए, जैसा कि ऐसे बांध के प्रदर्शन की निगरानी के लिए विनियमों द्वारा विनिर्दिष्ट किया गया हो।
- iv) विनिर्दिष्ट बांध का प्रत्येक मालिक प्रत्येक विनिर्दिष्ट बांध के आसपास एक हाइड्रो-मौसम विज्ञान केंद्र स्थापित करेगा जो विनियमों द्वारा

विनिर्दिष्ट ऐसे डेटा को रिकॉर्ड करने में सक्षम

v) प्रत्येक विनिर्दिष्ट बांध के मामले में, जिसकी ऊंचाई तीस मीटर या उससे अधिक है या ऐसे भूकंपीय क्षेत्र के अंतर्गत आता है, जैसा कि विनियमों द्वारा विनिर्दिष्ट किया गया हो, विनिर्दिष्ट बांध के मालिक ऐसे प्रत्येक बांध के आसपास के क्षेत्र में एक भूकंपीय स्टेशन स्थापित करेंगे जो सूक्ष्म और तीव्र गति वाले भूकंपों और ऐसे अन्य डेटा को रिकॉर्ड करेंगे जैसा कि विनियमों द्वारा विनिर्दिष्ट किया गया हो। विनिर्दिष्ट बांध का प्रत्येक मालिक ऐसे उपयुक्त स्थान पर और इस ढंग से डेटा एकत्र, संकलित, संसाधित और संग्रहीत करेगा जैसा कि विनियमों द्वारा विनिर्दिष्ट किया गया हो।

3.5 आपातकालीन कार्य योजना और आपदा प्रबंधन

अधिनियम के अध्याय VIII में आपातकालीन कार्य योजना और आपदा प्रबंधन से संबंधित प्रावधान शामिल हैं। उनमें से प्रावधानों का चयन कर यहां लाया गया है:

- i) प्रत्येक विनिर्दिष्ट बांध के संबंध में विनिर्दिष्ट बांध का प्रत्येक मालिक, अच्छी तरह से डिजाइन किए गए हाइड्रो-मौसम विज्ञान नेटवर्क और एक अंतर्वाह पूर्वानुमान प्रणाली स्थापित करेगा और बांध के नीचे की ओर संभावित बाढ़ प्रभावित क्षेत्रों के लिए एक आपातकालीन बाढ़ चेतावनी प्रणाली लगाएगा।
- ii) विनिर्दिष्ट बांध का प्रत्येक मालिक, प्रत्येक बांध के लिए, विनियमों द्वारा विनिर्दिष्ट अंतराल पर जोखिम मूल्यांकन अध्ययन करेगा और इस तरह का पहला अध्ययन अधिनियम के प्रारंभ होने की तारीख से पांच वर्षों के भीतर किया जाएगा।
- iii) विनिर्दिष्ट बांध का प्रत्येक मालिक, प्रत्येक बांध के संबंध में.

- क) जलाशय को प्रारंभिक रूप से भरने की अनुमित देने से पहले आपातकालीन कार्य योजना तैयार करेगा और उसके बाद नियमित अंतराल पर ऐसी योजनाओं को अद्यतन करेगा;
- ख) बांध के संबंध में जो अधिनियम के प्रारंभ से पहले निर्मित और भरा हुआ है, अधिनियम के प्रारंभ होने की तिथि से पांच वर्ष के भीतर आपातकालीन कार्य योजना तैयार करेगा और उसके बाद नियमित अंतराल पर ऐसी योजनाओं को अद्यतन करेगा जैसा कि विनियमों द्वारा विनिर्दिष्ट किया गया हो।
- iv) इस अधिनियम के प्रावधानों या इस अधिनियम के तहत विनिर्दिष्ट बांध और अन्य संगठनों और प्राधिकरणों के मालिक के दायित्व के प्रति बिना किसी पूर्वाग्रह के प्रत्येक मालिक, संगठन और प्राधिकरण विनिर्दिष्ट बांधों से उत्पन्न होने वाली किसी भी आपदा या आपातकाल का सामना करने या कम करने के लिए किसी कानून के तहत किसी प्राधिकरण द्वारा आवश्यक होने पर आवश्यक सहायता प्रदान करेगा।

3.6 व्यापक बांध सुरक्षा मूल्यांकन

अधिनियम के अध्याय IX में व्यापक बांध सुरक्षा मूल्यांकन से संबंधित प्रावधान शामिल हैं। उनमें से प्रावधानों को चुन कर यहां लाया गया हैं:

) विनिर्दिष्ट बांध का मालिक विनिर्दिष्ट बांध और उसके जलाशय की स्थितियों को निर्धारित करने के उद्देश्य से विनियमों के अनुसार गठित विशेषज्ञों के एक स्वतंत्र पैनल के माध्यम से प्रत्येक विनिर्दिष्ट बांध का व्यापक बांध सुरक्षा मूल्यांकन करेगा या करवाएगा। बशर्ते कि प्रत्येक मौजूदा विनिर्दिष्ट बांध के लिए पहला व्यापक बांध सुरक्षा मूल्यांकन अधिनियम के प्रारंभ होने की तारीख से पांच साल के भीतर किया जाएगा, और उसके बाद ऐसे प्रत्येक बांध का व्यापक बांध सुरक्षा मूल्यांकन नियमित अंतराल पर किया जाएगा जैसा कि विनियमों द्वारा विनिर्दिष्ट किया गया हो।

- ं।) व्यापक बांध सुरक्षा मूल्यांकन में निम्नलिखित शामिल होंगे, लेकिन इनकी सीमा यहीं तक नहीं होंगी:
 - क) संरचना के डिजाइन, निर्माण, संचालन,
 रखरखाव और प्रदर्शन पर उपलब्ध आंकड़ों
 की समीक्षा और विश्लेषण;
 - ख) विनियमों द्वारा विनिर्दिष्ट डिजाइन बाढ़ की अनिवार्य समीक्षा के साथ हाइड्रोलॉजिक और हाइड्रोलिक स्थितियों का सामान्य मूल्यांकन;
 - ग) विनियमों द्वारा विनिर्दिष्ट कुछ मामलों में
 अनिवार्य साइट विशिष्ट भूकंपीय मापदंडों
 के अध्ययन के साथ विनिर्दिष्ट बांध की
 भूकंपीय स्रक्षा का सामान्य मूल्यांकन;
 - घ) संचालन, रखरखाव और निरीक्षण प्रक्रियाओं का मूल्यांकन; और
 - ई) संरचना की अखंडता के लिए खतरा पैदा करने वाली किसी भी अन्य स्थितियों का मूल्यांकन
- iii) उक्त व्यापक बांध सुरक्षा मूल्यांकन निम्नलिखित मामलों में अनिवार्य होगा:
 - क) मूल संरचना या डिजाइन मानदंड में बड़ा संशोधन;
 - ख) बांध या जलाशय रिम पर एक असामान्य
 स्थित की खोज; और

- ग) एक चरम हाइड्रोलॉजिकल या भूकंपीय घटना।
- iv) एक विनिर्दिष्ट बांध का मालिक उक्त बांध सुरक्षा मूल्यांकन के परिणामों की रिपोर्ट एसडीएसओ को प्रदान करेगा, जैसा कि अधिनियम में उल्लेख किया गया है। एसडीएसओ विनिर्दिष्ट बांध के मालिक के साथ यह सुनिश्चित करने का प्रयास करेगा कि उपचारात्मक उपाय समय पर किए गए हैं, जिसके लिए मालिक पर्याप्त धनराशि प्रदान करेगा।

3.7 अपराध और दंड

अधिनियम के अध्याय X में अपराधों और दंड से संबंधित प्रावधान हैं। उनमें से चयनित प्रावधान यहां लाए गए हैं:

i) जो कोई उचित कारण के बिना केंद्र सरकार या राज्य सरकार के किसी अधिकारी या कर्मचारी या राष्ट्रीय समिति या एनडीएसए या राज्य समिति या एसडीएसओ द्वारा अधिकृत व्यक्ति को अधिनियम के तहत अपने कार्यों के निर्वहन में बाधा डालता है; या अधिनियम के तहत केंद्र सरकार या राज्य सरकार या राष्ट्रीय समिति या एनडीएसए या राज्य समिति या एसडीएसओ द्वारा या उनकी ओर से दिए गए किसी भी निर्देश का पालन करने से इनकार करता है, वह एक अवधि के लिए कारावास के साथ दंडनीय होगा जो एक साल तक या जुर्माना, या दोनों के साथ हो सकता है, और यदि इस तरह की बाधा या निर्देशों का पालन करने से इनकार करने से जीवन की हानि होती है या आसन्न खतरा होता है, तो कारावास के साथ दंडनीय होगा जो दो साल तक बढ़ सकता है।

- ii) अधिनियम में सरकार के किसी विभाग या किसी
 कंपनी या निगमित निकाय द्वारा किए गए
 अपराध के संबंध में प्रावधान हैं।
- iii) केंद्र सरकार या राज्य सरकार या राष्ट्रीय समिति या एनडीएसए या राज्य समिति या एसडीएसओ द्वारा इस संबंध में अधिकृत व्यक्ति द्वारा की गई शिकायत के अलावा कोई भी अदालत अधिनियम के तहत दंडनीय किसी भी अपराध का संज्ञान नहीं लेगी, जैसा कि स्थिति हो। मेट्रोपॉलिटन मजिस्ट्रेट या प्रथम श्रेणी के न्यायिक मजिस्ट्रेट से कम कोई भी अदालत अधिनियम के तहत दंडनीय किसी भी अपराध की कानूनी जांच नहीं करेगा।

3.8 विविध

अधिनियम के अध्याय XI में अन्य बातों के साथ-साथ वार्षिक रिपोर्ट तैयार करने से संबंधित प्रावधान, विनिर्दिष्ट बांधों के अलावा अन्य बांधों के साथ-साथ भारत के क्षेत्र के बाहर स्थित बांधों के संबंध में सुरक्षा उपाय, केंद्र सरकार और राज्य सरकारें एनडीएसए द्वारा विनियम बनाने के लिए नियम और शक्तियों का निमार्ण करती हैं। उनमें से प्रावधानों का चयन कर यहां लाया गया है:

i) प्रत्येक एसडीएसओ पिछले वितीय वर्ष की समाप्ति के तीन महीने के भीतर अपनी गतिविधियों और राज्य में विनिर्दिष्ट बांधों की सुरक्षा स्थिति की वार्षिक रिपोर्ट तैयार करेगा और ऐसी रिपोर्ट एनडीएसए और राज्य सरकार को भेजी जाएगी और वह सरकार उसे राज्य विधानमंडल के प्रत्येक सदन के समक्ष रखवाएगी, जहां इसमें दो सदन होते हैं या ऐसे विधानमंडल जहां एक सदन होता है, उसके समक्ष रखवाएगी। एनडीएसए, देश में बांध सुरक्षा गतिविधियों की एक समेकित वार्षिक रिपोर्ट तैयार करेगा और उसे पूर्ववर्ती वितीय वर्ष की समाप्ति के छह महीने के भीतर केंद्र सरकार

को प्रस्तुत करेगा और सरकार उसे संसद के प्रत्येक सदन के समक्ष रखवाएगी।

- ii) विनिर्दिष्ट बांधों के अलावा बांध का प्रत्येक मालिक ऐसे उपाय करेगा जो बांध की सुरक्षा सुनिश्चित करने के लिए आवश्यक हो सकते हैं और ऐसे उपायों का पालन करेंगे जो विनियमों द्वारा विनिर्दिष्ट किए गए हों।
- iii) राष्ट्रीय समिति की सिफारिशों पर एनडीएसए अधिनियम के प्रावधानों को लागू करने के लिए अधिनियम और उसके तहत बनाए गए नियमों के अन्रूप विनियम बना सकता है।
- iv) केंद्र सरकार उस राज्य सरकार को ऐसे निर्देश दे सकती है, जैसा वह आवश्यक समझे, जहां वह सरकार विनिर्दिष्ट बांध का मालिक हो और इस अधिनियम के प्रावधानों के प्रभावी कार्यान्वयन के लिए किसी अन्य मामले में विनिर्दिष्ट बांध के मालिक को निर्देश दे सकती है।

4.0 सारांश टिप्पणी

जल शक्ति मंत्रालय ने राजपत्र अधिसूचना एस.ओ. 757 (ई) दिनांक 17.02.2022 के तहत अध्यक्ष, सीडब्ल्यूसी की अध्यक्षता में बांध स्रक्षा पर राष्ट्रीय समिति का गठन किया है। राजपत्र अधिसूचना एस.ओ. 758 (ई) दिनांक 17.02.2022 के तहत मंत्रालय ने राष्ट्रीय बांध स्रक्षा प्राधिकरण की स्थापना को अधिस्चित किया है। जल शक्ति मंत्रालय ने राजपत्र अधिसूचना जी.एस.आर. 134 (ई) दिनांक 17.02.2022 के तहत "राष्ट्रीय बांध स्रक्षा समिति (प्रक्रिया, भत्ता और अन्य व्यय) नियम, 2022" और अधिसूचना राजपत्र जी.एस.आर. 135 (ई) दिनांक 17.02.2022 के तहत "राष्ट्रीय बांध स्रक्षा प्राधिकरण (कार्य और शक्तियां) नियम, 2022" को अधिसूचित किया है।

तक एनडीएसए का एक नियमित जब संगठनात्मक ढांचा तैयार नहीं हो जाता है, तब तक जल शक्ति मंत्रालय द्वारा एनडीएसए की स्थापना अप्रैल 2022 में, अतिरिक्त प्रभार के आधार पर, सदस्य (डिजाइन और अन्संधान), केंद्रीय जल आयोग की अध्यक्षता में, 5 सदस्यों यानी सदस्य (तकनीकी), सदस्य (नीति और अन्संधान), सदस्य (विनियमन), सदस्य (आपदा और प्रत्यास्थता) और सदस्य (प्रशासन और वित) की सहायता से की गई है। एनडीएसए के चार सदस्यों का अतिरिक्त प्रभार सीडब्ल्यूसी के चार मुख्य अभियंताओं को सौंपा गया है और जल शक्ति मंत्रालय के संयुक्त सचिव और वितीय सलाहकार को सदस्य (प्रशासन और वित्त) का अतिरिक्त प्रभार सौंपा गया है। म्ख्यालय में एनडीएसए की गतिविधियों का समर्थन करने के लिए, अतिरिक्त प्रभार के आधार पर निदेशक, केंद्रीय जल आयोग की अध्यक्षता में चार क्षेत्रीय कार्यालय चंडीगढ़, कोयम्बट्र, ग्वाहाटी और प्णे में स्थापित किए गए हैं।

बांध सुरक्षा अधिनियम 2021 के कार्यान्वयन का यह पहला वर्ष है, सभी केंद्र और राज्य सरकारें, केंद्र/राज्य सार्वजनिक क्षेत्र की यूटिलिटीज, स्थानीय प्राधिकरण और कंपनियां, जो एक विनिर्दिष्ट बांध का स्वामित्व, नियंत्रण, संचालन और रखरखाव करती हैं, को 16 जून 2022 को केंद्रीय जल आयोग और जल शक्ति मंत्रालय द्वारा आयोजित "भारत में बांध स्रक्षा शासन के लिए बांध स्रक्षा अधिनियम, 2021" पर एक राष्ट्रीय कार्यशाला के माध्यम से जागरूक किया गया। इस दिशा में, एनडीएसए अधिनियम के विभिन्न प्रावधानों के कार्यान्वयन की दिशा में वांछित गतिविधियों में तेजी लाने के लिए राज्यों को संवेदनशील बनाने और उन पर जोर देने के लिए केंद्रीय जल आयोग देश के चार क्षेत्रों में क्षेत्रीय बैठक-सह कार्यशाला आयोजित कर रहा है। दक्षिणी क्षेत्र के लिए बैठक 3 सितंबर 2022 को कोयंबटूर में और उत्तरी क्षेत्र

के लिए 10 सितंबर 2022 को चंडीगढ़ में आयोजित की गई थी जिसमें एससीडीएस और एसडीएसओ, केंद्रीय/राज्य पीएसयू और बांध मालिकों के अधिकारियों ने भाग लिया था।

बांध सुरक्षा अधिनियम, 2021 एक ऐतिहासिक कानून है जो भारत में हमारे बांधों के प्रबंधन, संचालन और रखरखाव के तरीके में एक आदर्श बदलाव लाता है। अधिनियम एकीकृत बांध सुरक्षा प्रक्रियाओं को लाने, बांध की विफलता से संबंधित आपदाओं को रोकने और देश में व्यापक बांध सुरक्षा प्रबंधन के लिए बहु-स्तरीय संस्थागत तंत्र और क्षमता निर्माण पर जोर देने का प्रयास करता है।

जल विद्युत ऊर्जा - लम्बा सफ़र और चुनौतियाँ

अनिल कवरानी, निदेशक, (पीएसपीएम) के.वि.प्रा.

जल विद्युत ऊर्जा के बारे में हम सभी बहुत अच्छे से जानते हैं, ऐसा भ्रम अधिकांश लोगों को हैं या यूँ कहें की अनेकों अभियंताओं को भी होता है। परन्तु जब इस बारे में चर्चा करें तो पाते हैं कि केवल मूल जानकारी हांसिल कर लेना ही काफी नहीं होता है। आसान से लगने वाली प्रक्रिया के पीछे कितनी लम्बी और कठिन यात्रा तय हुई है यह तो गंभीर रूप से विश्लेषण करने के बाद ही पता चलता है। यूँ तो मुख्य रूप में बहुत से लोग उपरी तौर पर जल से विद्युत् ऊर्जा बनाने की विधि की जानकारी रखते हैं पर मेरी तरह बहुत से लोगों और अभियंताओं को भी इसके पीछे की यात्रा का ठीक से ज्ञान न होने के कारण बहुत से पहलू अनछुए रह जाते है। आईये इस सफ़र में कुछ कदम साथ चलते हैं और अपने ज्ञान को थोड़ा और बल देते हुए इसे समझने का प्रयास करते हैं।

किसी भी सफ़र का, पहला कदम, मनुष्य के मन में सबसे पहले आता है और फिर यदि लक्ष्य प्राप्त करने का जुनून मन में हो तो यात्रा में आने वाली बाधाएं रूकावट की जगह राहें बन जाती हैं। परन्तु कितना भी सुहाना सफ़र यदि मंजिल के करीब पहुँचने की बजाय केवल विभिन्न प्रकार की मुश्किलों में ही उलझा रहे तो चिन्ता का विषय बन जाता है। यह भूमिका कहीं नकारात्मकता के भाव को बढ़ाने के लिए नहीं दी गयी है अपितु जल विद्युत् ऊर्जा के लम्बे और चुनौतीपूर्ण सफ़र की एक व्यवहारिक स्थिति का बयान है। परियोजना की पहचान इस पूरी प्रक्रिया का पहला कदम है जिसके लिए भी

सामान्यतः एक समिति या विशेष समिति का गठन किया जाता है और इस समिति में अनेक विषयों के विशेषज्ञ विभाग जैसे कि केन्द्रीय विद्युत प्राधिकरण, भारतीय भूगोलीय सर्वेक्षण, राष्ट्रीय रिमोट सेंसिंग केंद्र, भारतीय सर्वेक्षण, पर्यावरण, वन एवं जलवाय् परिवर्तन मंत्रालय, केन्द्रीय जल आयोग इत्यादि प्रतिनिधित्व करते है। लगभग 3 से 5 वर्ष की कड़ी मेहनत और विभिन्न पहलूओं में तालमेल बिठाने के पश्चात यह तय हो पाता है कि किस प्रदेश के किस स्थान पर किन-किन नदियों या बेसिन के जल का प्रयोग करते ह्ए कोई परियोजना कितनी स्थापित क्षमता की बन सकती है और क्या इस परियोजना से सिंचाई का लाभ भी लिया जा सकता है। आज के सन्दर्भ में तो यह भी विश्लेषण किया जाता है की क्या इसकी मदद से पम्प स्टोरेज परियोजना का भी विकास किया जा सकता है ? ऐसा इसलिए क्योंकि आज के समय में नवीकरणीय ऊर्जा को बढ़ोत्तरी देने के लिए जल विद्युत ऊर्जा एक सुन्दर, विश्वसनीय और साफ़-स्थरा (बिना प्रदुषण वाला) विकल्प है।

पहचान के पश्चात्, परियोजना का राज्य द्वारा किसी एजेंसी को इसका विकास करने हेतु आवंटन किया जाता है। कभी-कभी तो इस कदम में भी विभिन्न कारणों से वर्षों का अंतराल आ जाता है। लगभग 35 वर्षों पहले की कई परियोजनाए आज भी आवंटन से वंचित है। आवंटन के बाद परियोजना का सर्वेक्षण और जांच की जाती है,

तदोपरांत या तो परियोजना अपने अगले कदम अथवा जांच की तरफ बढती है या फिर उसका सर्वेक्षण और जांच कार्य रूक जाता है (विभिन्न कारणों से)। रूकने के कारणों का यदि निवारण हो जाता है तो फिर से परियोजना जांच की श्रेणी में चली जाती है, अन्यथा कई बार काफी समय तक यथास्थिति बरकरार रहती है।

जांच के परिणाम पर निर्भर करता है की परियोजना को सहमति जताई जाए या फिर त्रुटियों के निवारण हेतु विकास करने वाली एजेंसी को वापिस करना है। सहमति जताने के उपरान्त प्रोजेक्ट निर्माण होने की प्रक्रिया में आगे बढ़ता है। निर्माण के दौरान आने वाली अनेक समस्याओं से जूझते हुए परियोजना कभी-कभी यहाँ भी लम्बी अविध के लिए रुक जाती है अथवा अन्य स्थितियों में निर्माण होने की दिशा में सिक्रय रूप से आगे बढ़ती जाती है। परियोजना की क्षमता, उसकी भौगोलिक स्थिति, वितीय स्थिति, आदि पर उसके निर्माण का समय निश्चित हो पाता है। अंततः निर्माण उपरान्त परियोजना चालू होती है और हम कहते हैं कि अब यह परियोजना चल रही है यानि बिजली का उत्पादन और अन्य जो भी लाभ अपेक्षित हैं (सिंचाई आदि) वह निरन्तर प्राप्त होना श्रू हो गए हैं।

जल विद्युत ऊर्जा जहाँ एक स्वच्छ, सस्ती (व्यवहारिक रूप से लगभग शून्य परिवर्तनीय कीमत (वेरिएबल कास्ट) ऊर्जा है वहीं इसका इस्तेमाल बिजली उत्पादन के साथ-साथ सिंचाई और पीकिंग क्षमता के रूप में भी होता है। इसे मुख्य रूप में स्टोरेज और रन-ऑफ़ द रिवर के तरीको से पैदा किया जाता है। यह एक प्रदुषण रहित ऊर्जा उत्पादन स्टेशन होता है जो कि आज के इतने अधिक प्रदूषित वातावरण में एक वरदान की तरह है। जल विद्युत परियोजनाओं की काफी लम्बी आयु इसके पहचान से परिचालन में लगने वाले अधिक समय को अंततः भुलाने में सहायक सिद्ध होती है।

जिस प्रकार हर सिक्के के दो पहलू होते हैं इसी प्रकार जहाँ जल विद्युत ऊर्जा उत्पादन के अनेकों लाभ है वहीं कुछ चुनोतियांभी हैं। इनमें मुख्यतः इनके उत्पादन की स्थिति तक आने में लगने वाली काफी लम्बी अविध, स्थापित करने में बहुत अधिक खर्चा, उस इलाके में रहने वाले लोगों को विस्थापित औए ठीक से स्थापित करने में आने वाली अनेकों चुनौतियों का सामना करना (जिसमें अक्सर काफी समय व पैसा व्यय होता है) और इस ऊर्जा का वर्षा पर निर्भर होना तथा अनेकों भौगोलिक अवस्थितियों का सामना करना शामिल है।

इस प्रकार की परियोजनाएं एक दूरगामी दृष्टिकोण को ध्यान में रख कर, पर्यावरण संत्लन का उचित आकलन एवं दुष्प्रभावों का निराकरण कर के, उचित कीमत पर निर्माण के लिए प्रस्त्त की जानी चाहिएं। स्रक्षा सर्वोपरि है, अत: इस बात का सबसे पहले ध्यान रखना चाहिए। परियोजना में विवाद नहीं होने चाहिएं। हितधारकों की परस्पर सहमति परियोजना के प्रारंभ में ही प्राप्त कर लेनी चाहिए। मैनपावर एवं अन्य रिसोर्सेज की समय के हिसाब से व्यवस्था एडवांस में ही कर लेनी चाहिए। कनेक्टिंग सड़कें, पुल, आवासीय कालोनी, मेडिकल स्विधाएँ, विद्यालय स्थापित करना भी परियोजना के अन्य घटकों की भांति ही महत्वपूर्ण है। धन की व्यवस्था बह्त सोच-समझ कर करनी होगी। परियोजना के सफल सम्पादन के साथ ही उत्पादित बिजली के पारेषण तथा बिजली के विक्रय की लॉन्ग-टर्म व्यवस्था करना सफलता के लिए आवश्यक होता है। परियोजना के लिए उचित निर्माण सामग्री, कन्स्ट्रशन यन्त्र, परियोजना की मशीनों का प्राप्त करना एवं उचित समायोजन उच्च श्रेणी की अभियांत्रिकी कुशलता एवं कुशल प्रबंधन के बिना संभव नहीं है। परियोजना को समय सीमा में पूर्ण स्रक्षा एवं सफलता पूर्वक पूरा कर लेने के पीछे क्शल नेतृत्व, मानव श्रम, सच्चे दिल से दिया गया योगदान, व्यक्तिगत रूप से महान योगदान आदि तत्व महत्व पूर्ण भूमिका निभातें हैं। हमारे द्वारा किया गया प्रकृति का संरक्षण, प्रकृति द्वारा हम पर किए उपकार के रूप में प्राप्त होता है। जल विद्युत् परियोजनाए किसी एक का लाभ न होकर समाज एवं देश की ख्शहाली के लिए होतीं हैं।

उपरोक्त विस्तृत चर्चा व विश्लेषण के पश्चात यह निष्कर्ष निकलता है कि यदि थोड़ा-थोड़ा करके नवीनतम तकनीक

का इस्तेमाल करके, अलग-अलग मंत्रालयों, विभागों और एजेंसियों के बीच में सही तालमेल बिठा कर छोटे-छोटे पहलुओं में समय व पैसा दोनों बचाकर जहाँ इस लम्बे सफ़र को काफी कम करने का प्रयास किया जा सकता है वहीं कई चुनौतियाँ पुनरावृति प्रकार की है वे उनका काफी सोच-विचारकर मानक तैयार करके उनकी वजह से होने वाले समय और खर्चे को कम तो जरूर किया जा सकता है | इन प्रयासों के अतिरिक्त सौर तथा वाय ऊर्जा

के साथ जल विद्युत का समन्वय करके पर्यावरण, वन और जलवायु बदलाव जैसी कठिन चुनौतियों का सामना भी अपेक्षाकृत आसानी से किया जा सकता है | आइए सभी मिलकर विचार करें कि किस प्रकार सभी पहलुओं को ध्यान में रखते हुए अधिक से अधिक लाभ उठाया जाए |

हिंदी हमारे देश और भाषा की प्रभावशाली विरासत है । - माखनलाल चतुर्वेदी

भारत में जलविद्युत क्षेत्र की प्रगति हेतु भारत सरकार द्वारा प्रारंभ किए गए नीतिगत स्तर के विभिन्न परिवर्तन

श्रवण कुमार, मुख्य अभियंता, राजीव वार्ष्णेय, निदेशक, आशीष कुमार लोहिया, उपनिदेशक हाइड्रो परियोजना मूल्यांकन प्रभाग, केविप्रा

भारत के धारणीय विकास और ऊर्जा स्रक्षा में जलविद्य्त महत्वपूर्ण भूमिका निभा सकता है क्योंकि यह स्थिरता, उपलब्धता और विश्वसनीयता के मानदंडों को पूरा करता है। यह पर्यावरण की दृष्टि से हितकरी, ऊर्जा का गैर-प्रदूषणकारी और नवीकरणीय ऊर्जा को संत्लित करने के लिए सबसे उपयुक्त स्रोत है। इसमें लोड विविधताओं के समायोजन को तत्काल प्रारंभ करने/रोकने की अंतर्निहित क्षमता विद्यमान है और इस प्रकार उच्चतम आवश्यकताओं को पूरा करने के अलावा यह विद्युत व्यवस्था की विश्वसनीयता में स्धार करने में भी सहायक सिद्ध होता है। जलविद्युत परियोजनाओं का कार्यकारी जीवनकाल 100 वर्षों से अधिक का होता है, जिसमें नवीनीकरण और आध्निकीकरण की लागत कम होती है और जीवाश्म ईंधन पर निर्भरता कम करने में मदद मिलती है। जलविद्युत उत्पादन लंबे समय के लिए आर्थिक और पर्यावरण के अनुकूल विद्युत संसाधन के रूप में अधिक लाभ प्रदान करता है। ये दूरस्थ और पिछड़े क्षेत्रों के विकास की राह प्रशस्त करने में भी मदद करते हैं।

सौर और पवन ऊर्जा उत्पादन की आंतरायिकता और परिवर्तनशीलता को ध्यान में रखते हुए, विद्युत प्रणाली में नवीकरणीय ऊर्जा के स्चारू एकीकरण और ग्रिड स्रक्षा और स्थिरता के लिए संतुलन ऊर्जा प्रदान करने के लिए जलविद्युत परियोजनाओं की प्रगति अधिक महत्वपूर्ण हो जाती है। जलविद्युत उत्पादन के टैरिफ की भविष्य में रणनीतिक भूमिका अपेक्षित है विशेष रूप से ग्रिड में नवीकरणीय ऊर्जा स्रोतों के विस्तृत पैमाने पर वृद्धि को देखते ह्ए जिसमें आंतरायिकता अंतर्निहित होती है। भारत में लगभग 1,50,000 मेगावाट आंकी गई आर्थिक रूप से दोहन योग्य और व्यवहार्य जलविद्युत क्षमता का भंडार है और अभी तक चिहिनत की गई क्षमता का लगभग 36% हिस्सा का ही विकास किया गया है। सरकार ने जलविदयुत क्षमता के विकास को उच्च प्राथमिकता दी है और समय-समय पर जलविद्युत के विकास में बाधा डालने वाले कई मामलों के समाधान के लिए कई नीतिगत पहलों की श्रूआत की हैं।

किए गए नीति संबंधी उपायों की कुछ प्रमुख विशेषताओं में ये तत्व शामिल हैं, यथा-नवीकरणीय ऊर्जा स्रोतों के

रूप में बड़ी जलविद्युत परियोजनाओं (एलएचपी, अर्थात् 25 मेगावाट से अधिक) की घोषणा करना, गैर-सौर नवीकरणीय खरीद दायित्व के भीतर हाइड्रो खरीद दायित्व (एचपीओ) को एक अलग इकाई के रूप में पेश करना, जलविद्युत श्ल्क को कम करने के लिए टैरिफ य्क्तिकरण उपाय, फ्लड मॉडरेशन घटक के लिए बजटीय सहायता का प्रावधान और ब्नियादी ढांचा यानी सड़कें/प्ल का निर्माण, देश में पंप स्टोरेज परियोजनाओं सहित जलविद्युत क्षेत्र के विकास को बढ़ावा देने के लिए नीतिगत उपाय स्झाने के लिए समिति का गठन, सीपीएसयू की अधिक भागीदारी को बढ़ावा देकर रुकी हुई जलविद्य्त परियोजनाओं का प्नरुद्धार, रुकी हुई जलविद्युत परियोजनाओं के अधिग्रहण की स्विधा के लिए मूल्यांकन समिति का गठन, जलविद्युत संयंत्रों से विद्युत के पारेषण के लिए अंतर राज्यीय पारेषण प्रणाली (आईएसटीएस) श्ल्क की छूट, जल विद्युत परियोजनाओं को क्रियान्वित करने वाले सीपीएसई और ठेकेदार के बीच समस्याओं को दूर करने के लिए स्वतंत्र अभियंता की निय्क्ति के माध्यम से विवाद निवारण तंत्र की स्थापना और विद्युत परियोजनाओं को क्रियान्वित करने वाले सीपीएसय्/सांविधिक निकायों के अन्बंधों में उत्पन्न होने वाले विवादों के निपटान के लिए स्वतंत्र अभियंताओं की एक स्लह समिति (सीसीआईई) का गठन।

पाइपलाईन में नीतिगत पहल में, एनईआर के लिए उच्च क्षमता वाले विद्युत पारेषण कॉरिडोर के माध्यम से ब्नियादी ढांचे को सक्षम करने और एक सामान्य पारेषण प्रणाली के निर्माण की परिधि में विद्युत परियोजना के स्विचयार्ड से निकटतम पूलिंग बिंद् तक पारेषण लाईन को शामिल करना रहा है। विभिन्न क्षेत्रों की ऊर्जा आवश्यकताओं, ग्रिड आवश्यकताओं और विकासात्मक अपेक्षाओं को पूरा करने के लिए यथाशीघ्र व्यवहार्य जलविद्युत क्षमता का दोहन करने के लिए जल विद्युत नीति का एक मसौदा तैयार किया गया है। यह नीति निर्माण की बढ़ी हुई लागत (लगभग 10 करोड़/मेगावाट) से लेकर जल विद्य्त क्षेत्र को प्रभावित करने वाली प्रम्ख च्नौतियाँ, पेक्षाकृत अधिक टैरिफ के कारण पीपीए पर हस्ताक्षर न करना, भूमि अधिग्रहण और परियोजना मंजूरी में देरी, व्यवहार्यता को प्रभावित करने वाले मुफ्त बिजली और अग्रिम प्रीमियम, लंबी अवधि और दूरस्थ स्थानों के कारण वितीय बाधाएं और संविदात्मक मामले और अनिश्चितताएं जैसी विभिन्न समस्याओं का समाधान करती हैं।

पंण्ड स्टोरेज परियोजनाएँ लचीली ऊर्जा उत्पादन संपितयों के उद्देश्य को पूरा करती हैं जो बेस लोड और उच्चतम ऊर्जा दोनों को कुशलतापूर्वक और आर्थिक रूप से आपूर्ति कर सकते हैं। साथ ही पंण्ड स्टोरेज परियोजनाएँ भविष्य की जरूरत हैं और देश में विद्युत की गतिशील आपूर्ति और मांग जैसी समस्याओं के समाधान के लिए आवश्यक हैं। इस संबंध में, पीएसपी नीति का एक मसौदा को प्रस्तावित किया गया है ताकि इन परियोजनाओं को पारंपरिक जलविद्युत परियोजनाओं से अलग माना जा सके साथ ही इसे शीघ्र मंजूरी मिल सके और इसके परिणामस्वरूप तेजी से कार्यान्वयन किया जा सके।

केविप्रा ने अगस्त, 2022 में जलविद्युत योजनाओं के लिए डीपीआर के निर्माण, परीक्षण, स्वीकृति और सहमित के लिए दिशानिर्देशों का संशोधन 6.0 प्रकाशित किया है और पीएसपी योजनाओं के लिए डीपीआर तैयार करने, परीक्षण, स्वीकृति और सहमित के लिए अलग दिशानिर्देश प्रकाशित किए हैं। पिछले संस्करण के संदर्भ में प्रमुख परिवर्तनों का सार निम्नवत है-

- डीपीआर तैयार करने की प्रक्रिया की समय-सीमा को संशोधित कर 900 दिन से 720 दिन किया गया है।
- जलविद्युत परियोजनाओं की सहमित की समय-सीमा को घटाकर 140 दिन कर दिया गया है (पहले की समय-सीमा 150 दिन थी)
- निम्नलिखित पीएसपी के लिए सहमति की समय-सीमा घटाकर 75 दिन कर दी गई है।

वर्ष 2030 तक भारत की गैर-जीवाश्म ऊर्जा क्षमता को 500 गीगावाट तक प्राप्त करने की दिशा में भारत की प्रतिबद्धता को पूरा करने के लिए जलविद्युत क्षेत्र में कई नीतिगत पहल की आवश्यकता हो सकती है। कुछ की घोषणा पहले ही भारत सरकार द्वारा की जा चुकी है और कई अन्य की घोषणा की जानी है। भारत सरकार द्वारा नीति स्तर की पहल के साथ-साथ राज्य सरकारों की अधिक भागीदारी की भी आवश्यकता है अर्थात् एकल खिड़की प्रणाली के माध्यम से जलविद्युत परियोजना के विकास के लिए आवश्यक अपने विभिन्न विभागों से सभी स्वीकृतियों को तेजी से ट्रैक करने के लिए उपयुक्त प्रावधान करना और जलविद्युत परियोजनाओं के लिए

आवश्यक भूमि के समय पर अधिग्रहण के लिए परियोजना विकासकर्ताओं को आवश्यक समर्थन देना।

रुकी हुई जलविद्युत परियोजनाओं के अधिग्रहण की सुविधा के लिए मूल्यांकन समिति के लिए मानक संचालन प्रक्रिया (एसओपी):

समिति निम्नलिखित मानक संचालन प्रक्रिया (एसओपी) के अनुसार प्रस्तावों की जांच करेगी-

- (1) आईपीपी की केवल वे रुकी हुई एचई परियोजनाएं, जो विकास के प्रारंभिक चरण में हैं (अर्थात् 25% तक की भौतिक प्रगति) पर इस व्यवस्था के तहत विचार किया जाएगा।
- (2) सीपीएसयू एक पेशेवर परामर्शदाता के माध्यम से समुचित सावधानी बरतेंगे और अधिग्रहण की जा रही जमीन पर मौजूद परियोजना से संबंधित परिसंपतियों का मूल्यांकन करेंगे।
- (3) राज्य सरकार और पदेन विकासकर्ता के बीच हस्ताक्षरित एमओय्/एमओए/अनुबंध समझौते के विभिन्न प्रावधानों और नियमों और शर्तों की जांच, विशेष रूप से संबंधित पार्टियों की भूमिका, जिम्मेदारियों और दायित्वों का पता लगाने के लिए एक्जिट प्रावधानों की जांच की जाएगी ताकि सीपीएसयू द्वारा सुचारू अधिग्रहण सुनिश्चित किया जा सके। विभिन्न सरकारी एजेंसियों को किए गए भुगतानों पर वास्तविक आधार पर विचार किया जाएगा।
- (4) मूल्यांकन केवल उन संपत्तियों का किया जाएगा जो अभी भी व्यवहार्य हैं और निजी डेवलपर के अधिकार में निर्विवाद रूप से है और जिसे सीपीएसयू को निर्बाध रूप से सौंपा जा सकता है।
- (5) सीपीएसयू, समिति के सदस्य सचिव और मुख्य अभियंता (एचपीए), केविप्रा को उचित परिश्रम (प्रारूप की जांच सूची के अनुसार) करने के बाद, उनकी सिफारिशों और सभी सहायक दस्तावेजों के साथ मूल्यांकन रिपोर्ट प्रस्तुत करेंगे।

- (6) समिति सचिवालय अर्थात् सदस्य सचिव का कार्यालय, प्रारूप की जांच सूची के अनुसार प्रस्ताव की पूर्णता के संबंध में उसका अवलोकन करेगा। यदि प्रस्ताव अधूरा है, तो संबंधित सीपीएसयू को 4 कार्य दिवसों के भीतर समिति सचिवालय द्वारा सूचित किया जाएगा।
- (7) पूर्ण प्रस्ताव प्राप्त होने के उपरांत, सदस्य सचिव, सिमिति के अध्यक्ष के परामर्श से सिमिति की बैठक की व्यवस्था करेंगे। सीपीएसयू से प्राप्त प्रस्ताव इलेक्ट्रॉनिक मीडिया के माध्यम से सभी सदस्यों को परिचालित किया जाएगा।
- (8) समिति द्वारा सभी पहलुओं में केवल पूर्ण प्रस्ताव की जांच की जाएगी।
- (9) सीपीएसयू का अधिग्रहण करने वाली परियोजना को समिति के समक्ष विस्तृत प्रस्तुति देने के लिए कहा जाएगा।
- (10) भूमि पर किए गए वास्तविक कार्यों की तुलना में प्रस्तुत किए गए दावों/मूल्यांकन की निगरानी के लिए समिति या उप-समिति परियोजना स्थल का दौरा कर सकती है।
- (11) साइट पर जाने वाली उप-सिमिति, सिमिति में विचार-विमर्श और चर्चा के लिए सिमिति के साथ साइट के दौरे की रिपोर्ट साझा करेगी।
- (12) समिति की बैठक का कार्यवृत (एमओएम) का मसौदा समिति सचिवालय द्वारा तैयार किया जाएगा और सभी सदस्यों को परिचालित किया जाएगा। समिति के अध्यक्ष के अनुमोदन के बाद बैठक के कार्यवृत को अंतिम रूप दिया जाएगा।
- (13) सिमिति द्वारा केवल तकनीकी वाणिज्यिक व्यवहार्य जलविद्युत परियोजनाओं के प्रस्तावों की जांच/अन्शंसा की जाएगी।
- (14) सिमिति की प्रारंभिक बैठक में उठाई गई टिप्पणियों को शामिल करने के बाद सीपीएसयू द्वारा अपना पूरा प्रस्ताव प्रस्तुत करने के 45 दिनों के भीतर

जलविद्युत परियोजना के मूल्यांकन के संबंध में अपनी अंतिम सिफारिश देगी।

(15) सिमिति सिचवालय को केविप्रा, पीएफसी और सीपीएसयू प्राप्त करने वाली परियोजना के अधिकारियों द्वारा, यदि आवश्यक हो, प्रस्तावों के अवलोकन के लिए, सिमिति की बैठकों की व्यवस्था करने, बैठकों के कार्यवृत्त का मसौदा तैयार करने, सिमिति के सदस्यों को सूचित करने, और

सीपीएसयू का अधिग्रहण करने वाली परियोजना, आदि में सहायता प्रदान की जाएगी।

(16) समिति की सेवाएं प्राप्त करने वाला सीपीएसयू, व्यय अर्थात् मानदेय, टीए/डीए, विविध व्यय, आदि का वहन करेगा

बुनियादी ढांचे को सक्षम बनाने हेतु लागत के लिए सैद्धांतिक अनुमोदन और बजटीय सहायता जारी करने वास्ते आवेदनों की जांच के लिए मानक संचालन प्रक्रिया (एसओपी)

श्रवण कुमार, मुख्य अभियंता, राकेश कुमार, उप निदेशक हाइड्रो परियोजना मूल्यांकन प्रभाग, केविप्रा

1. प्रस्तावना

- (क) विद्युत मंत्रालय (एमओपी) द्वारा दिनांक 28.09.2021 के कार्यालय ज्ञापन के माध्यम से पीएसपी सहित जलविद्युत परियोजनाओं के बुनियादी ढांचे को सक्षम बनाने हेतु लागत के लिए बजटीय समर्थन के आवेदन, परीक्षण और जारी करने की प्रक्रिया प्रस्तुत की गई थी।
- (ख) बुनियादी ढांचे को सक्षम बनाने के लिए बजटीय समर्थन की सीमा है
 - i) 200 मेगावाट तक की परियोजनाओं के लिए
 ₹ 1.5 करोड़/मेगावाट
 - ii) 200 मेगावाट से अधिक की परियोजनाओं के लिए ₹ 1.0 करोइ/मेगावाट

2. बुनियादी ढांचे को सक्षम बनाने की लागत के लिए बजटीय सहायता के लिए पात्रता

(क) पंप स्टोरेज परियोजनाओं (पीएसपी) सहित सभी बड़ी जलविद्युत परियोजनाएं (25 मेगावाट से अधिक) पर या तो केंद्रीय विद्युत प्राधिकरण (सीईए) या राज्य सरकार द्वारा सहमति दी गई है, जिसमें पहले प्रमुख पैकेज (बांध/एचआरटी/बिजली घर आदि) के लिए 08.03.2019 के बाद जारी किया गया लेटर ऑफ अवार्ड (एलओए) बुनियादी ढांचे को सक्षम बनाने की लागत के लिए बजटीय सहायता के लिए पात्र होगा।

- (ख) परियोजना के प्रमुख घटकों को पास के राष्ट्रीय/राज्य राजमार्ग से जोड़ने के लिए आवश्यक सभी स्थायी सड़कें और पुल बजटीय सहायता के पात्र होंगे। हालाँकि इन सड़कों/पूलों में वे कार्य शामिल नहीं हैं, जिनके लिए एनएचएआई, बीआरओ, पीडब्ल्यूडी, एसआरआरडीए, आरडब्ल्यूडी, पीडब्ल्यूडी (सड़कें), आरईओ (ग्रामीण इंजीनियरिंग संगठन) आदि या केंद्रीय योजनाएँ जैसे पीएमजीएसवाई (प्रधानमंत्री ग्राम सड़क योजना), मनरेगा या राज्य विशिष्ट योजनाएँ जैसे म्ख्यमंत्री सड़क योजना आदि जैसी किसी केंद्रीय/राज्य एजेंसी द्वारा लेटर ऑफ अवार्ड जारी किया गया है या वर्तमान में कार्यान्वयन के अधीन है।
- (ग) निम्नलिखित संबंधित लागतों सहित सहमति डीपीआर में "आर-संचार" शीर्ष के तहत आम तौर पर शामिल सड़कों और पुलों की लागत बजटीय सहायता के रूप में जारी करने के लिए पात्र होगी:
 - i) भूमि अधिग्रहण
 - ii) सभी वैधानिक कर/आरोपित राशि, शुल्क उपकर आदि।
 - iii) भूमि अधिग्रहण की लागत

बुनियादी ढांचे को सक्षम बनाने हेतु लागत के लिए बजटीय सहायता जारी करने की शर्तें

(क) बजटीय सहायता का अनुदान उपयुक्त सड़क के

एक निश्चित भाग/पूरी लंबाई के पूर्ण निर्माण और पुल/पुलों के पूर्ण निर्माण के बाद प्रतिपूर्ति के रूप में होगा और अनुमोदित/मूल परियोजना लागत के संदर्भ में 25% वितीय प्रगति प्राप्त करने के रूप में होगा।

- (ख) परियोजना विकासकर्ता वांछनीय बजटीय सहायता या अनुरोधित बजटीय सहायता के समतुल्य राशि के लिए केविप्रा को एक बैंक गारंटी प्रस्तुत करेगा, जो उपयुक्त नियामक आयोग द्वारा टैरिफ के निर्धारण की तिथि की अवधि तक वैधता अवधि के साथ कम हो।
- (ग) अनुदान सैद्धांतिक अनुमोदन के अनुरुप राशि या आधारभूत संरचना कार्यों को सक्षम बनाने पर किए गए वास्तविक व्यय तक सीमित होगा, इनमें से जो भी ऊपर पैरा 1 (ख) में उल्लिखित सीमा के तहत कम हो।
- 4. केविप्रा निम्नलिखित मानक संचालन प्रक्रिया के अनुसार बुनियादी ढांचे को सक्षम बनाने हेतु लागत के लिए बजटीय समर्थन के सैद्धांतिक अनुमोदन के आवेदनों की जांच करेगा
- (क) विकासकर्ता हाइड्रो परियोजना मूल्यांकन प्रभाग, केविप्रा (ईमेल आईडी: hpaone-cea@gov.in, cehpa-cea@gov.in & krsharvan@nic.in) को सभी प्रासंगिक दस्तावेजों के साथ सैद्धांतिक अनुमोदन हेतु आवेदन जमा करेगा।
- (ख) हाइड्रो परियोजना मूल्यांकन प्रभाग, केविप्रा आवेदन की जांच के लिए आवश्यक दस्तावेजों के संबंध में आवेदन की पूर्णता की जांच करेगा और आवेदन प्राप्त होने के 7 दिनों के भीतर प्रारंभिक टिप्पणियां, यदि कोई हो, प्रस्तुत करेगा।
- (ग) केविप्रा द्वारा सभी पहलुओं में केवल पूर्ण आवेदन पर विचार और जांच की जाएगी।
- (घ) बजटीय सहायता के लिए परियोजना की पात्रता की जांच निम्नान्सार की जाएगी:
 - परियोजना को राज्य सरकार या केविप्रा द्वारा सहमति दी जानी चाहिए।
 - परियोजना की स्थापित क्षमता 25 मेगावाट से अधिक होगी
 - 08.03.2019 के बाद जारी परियोजना के पहले बड़े पैकेज के लिए पुरस्कार पत्र

(ङ) बुनियादी ढांचे को सक्षम बनाने की लागत का अनुमान नवीनतम मूल्य स्तर पर होगा। आवेदन में उल्लिखित वांछित बुनियादी ढांचे के मूल्य स्तर और लागत अनुमानों की तुलना डीपीआर/निवेश अनुमोदन चरणों के दौरान केविप्रा/राज्य सरकार द्वारा अनुमोदित सक्षम बुनियादी ढांचे के संबंध में की जाएगी।

> यदि आवश्यक हो, तो बुनियादी ढांचे को सक्षम बनाने की लागत का अनुमान केविप्रा के थर्मल सीविल डिजाइन प्रभाग (जो केंद्रीय जल आयोग के अधिकारियों द्वारा संचालित है) या केंद्रीय जल आयोग के सीए (एचडब्ल्यूएफ) निदेशालय को जांच और प्नरीक्षण के लिए भेजा जा सकता है।

(च) बजटीय सहायता के लिए विचार की गई सड़कों के लेआउट की बजटीय सहायता की पात्रता के संबंध में जांच की जाएगी।

इसके अलावा, आवेदन में विकासकर्ता द्वारा सुविचारित सड़कों के लेआउट की तुलना डीपीआर/निवेश अनुमोदन चरणों के दौरान केविप्रा/राज्य सरकार द्वारा अनुमोदित सड़कों के लेआउट से की जाएगी।

(छ) केविप्रा के हाइड्रो परियोजना मूल्यांकन प्रभाग और थर्मल सीविल डिजाइन प्रभाग/ केंद्रीय जल आयोग के सीए (एचडब्ल्यूएफ) निदेशालय की भूमिका निम्नानुसार है:

हाइड्रो परियोजना मूल्यांकन प्रभाग, केविप्रा :

आवेदन की जांच, केविप्रा के टीसीडी डिवीजन के साथ समन्वय/केंद्रीय जल आयोग के सीए (एचडब्ल्यूएफ) निदेशालय, अंतिम पुनरीक्षण और केविप्रा की सिफारिशों की तैयारी और अभिलेखों का रखरखाव।

थर्मल सीविल डिजाइन प्रभाग, केविप्रा / सीए (एचडब्ल्यूएफ) निदेशालय, केजआ:

आधारभूत संरचना को सक्षम करने के लेआउट और लागत की जांच और पुनरीक्षण

- (ज) बजटीय सहायता के लिए आवेदन करने वाले विकासकर्ता को विस्तृत प्रस्तुति देने के लिए कहा जा सकता है।
- (झ) विकासकर्ता को भूमि अधिग्रहण की लागत के लिए

सहायक दस्तावेज उपलब्ध कराने होंगे। इसके अलावा, विकासकर्ता को निम्नलिखित प्रमाण पत्र प्रस्तुत करने होंगे।

प्रमाणिक दस्तावेज बताते है कि बजटीय सहायता के रूप में प्राप्त भूमि अधिग्रहण सहित बुनियादी ढांचे को सक्षम करने की लागत डीपीआर के किसी अन्य प्रावधान से लोड/वसूली नहीं की जाती है। प्रमाणिक दस्तावेज बताते है कि जिस भूमि की लागत सैद्धांतिक स्वीकृति में अनुदान के रूप में प्राप्त की जाती है, उसका उपयोग सड़कों/पुलों के निर्माण के अलावा किसी अन्य उददेश्य के लिए नहीं किया जाता है।

- (ञ) हाइड्रो परियोजना मूल्यांकन प्रभाग, केविप्रा पूरा आवेदन प्राप्त होने के 45 दिनों के भीतर बुनियादी ढांचे को सक्षम बनाने की लागत के लिए बजटीय समर्थन के सैद्धांतिक अनुमोदन के लिए विद्युत मंत्रालय को अपनी अंतिम सिफारिश देगा।
- 5. केविप्रा निम्नलिखित मानक संचालन प्रक्रिया के अनुसार बुनियादी ढांचे के कार्यों को सक्षम बनाने वास्ते बजटीय सहायता जारी करने के लिए आवेदनों की जांच करेगा
- (क) विकासकर्ता हाइड्रो परियोजना मूल्यांकन प्रभाग, केविप्रा (ई-मेल आईडी: hpaone-cea@gov.in, cehpa-cea@gov.in & krsharvan@nic.in) को सभी प्रासंगिक दस्तावेजों के साथ बुनियादी ढांचे के काम को सक्षम बनाने के लिए बजटीय समर्थन जारी करने के लिए आवेदन प्रस्तुत करेगा। केवल वे एचई परियोजनाएं जिनमें अनुमोदित/मूल परियोजना लागत के संदर्भ में 25% वितीय प्रगति हासिल की गई है, को सक्षम बुनियादी ढांचे की लागत के लिए बजटीय सहायता की प्रतिपूर्ति के लिए विचार किया जाएगा।
- (ख) सभी पहलुओं में केवल पूर्ण आवेदन की जांच की जाएगी।
- (ग) हाइड्रो परियोजना मूल्यांकन प्रभाग आवेदन की जांच के लिए आवश्यक दस्तावेजों के संबंध में आवेदन की पूर्णता की जांच करेगा और आवेदन प्राप्त होने के 07 दिनों के भीतर प्रारंभिक टिप्पणियां, यदि कोई हो, प्रस्तुत करेगा।
- (घ) प्रस्ताव परीक्षण के लिए एचपीएम डिवीजन, केविप्रा और टीसीडी डिवीजन, केविप्रा (जो सीडब्ल्यूसी

अधिकारियों दवारा संचालित है) को भेजा जाएगा।

(ङ) एचपीए डिवीजन, टीसीडी डिवीजन और एचपीएम डिवीजन की भूमिका निम्नान्सार है:

एचपीए डिवीजन, केविप्रा:

आवेदन की जांच, केविप्रा के एचपीएम और टीसीडी डिवीजनों के साथ समन्वय, परियोजना की वितीय प्रगति की जांच, अंतिम पुनरीक्षण और केविप्रा की सिफारिशों की तैयारी। रिकॉर्ड का रखरखाव और बैंक गारंटी।. टीसीडी डिवीजन, केविप्रा जांच और पुनरीक्षण और सक्षम ब्नियादी ढांचे की लागत

एचपीएम डिवीजन, केविप्रा:

परियोजना की भौतिक/वित्तीय प्रगति की जांच और दिशा-निर्देशों के अन्सार प्रमाण पत्र जारी करना

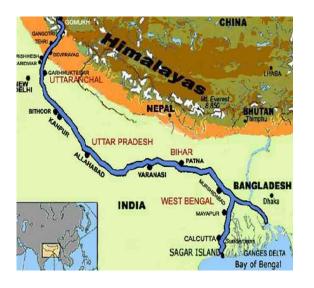
- (च) बजटीय सहायता के लिए आवेदन करने वाले विकासकर्ता को विस्तृत प्रस्तुति देने के लिए कहा जा सकता है।
- (छ) निम्निलिखित अधिकारियों की एक सिमिति परियोजना के स्थल का दौरा करेगी ताकि बुनियादी ढांचे के निर्माण की प्रगति की जांच की जा सके।
 - i) एचपीए डिवीजन, केविप्रा: 1-2 अधिकारी
 - ii) टीसीडी डिवीजन, केविप्रा: 1 अधिकारी
 - iii) एचपीएम डिवीजन, केविप्रा: 1 अधिकारी
- (ज) समिति पूर्ण आवेदन प्राप्त होने के 14 दिनों के भीतर परियोजना स्थल का दौरा करेगी।
- (झ) एचपीएम डिवीजन, केविप्रा पूर्ण आवेदन की प्राप्ति से 20 दिनों के भीतर परियोजना के बुनियादी ढांचे को सक्षम करने की भौतिक/वितीय प्रगति का प्रमाण पत्र प्रस्तुत करेगा।
- (ञ) टीसीडी डिवीजन, केविप्रा पूर्ण आवेदन प्राप्त होने के 20 दिनों के भीतर बुनियादी ढांचे को सक्षम बनाने हेतु लागत की जांच करेगा।
- (ट) एचपीए डिवीजन, केविप्रा पूरा आवेदन प्राप्त होने के 30 दिनों के भीतर बुनियादी ढांचे को सक्षम बनाने हेतु लागत वास्ते बजटीय समर्थन जारी करने के लिए विद्युत मंत्रालय को अपनी अंतिम सिफारिश देगा।

में "गंगा"

अल्पना श्रीवास्तव, आशुलिपिक, राजभाषा अनुभाग

गंगा सिर्फ एक नाम नहीं अपितु कई युगों का समावेश है। पतित पावनी माता गंगा पवित्रता और दिव्यता के लिए पूज्यनीय है। वेद, पुराण, उपनिषद और आरण्यक से लेकर कई ग्रंथों में उसका उल्लेख मिलता है। ऋगवेद, महाभारत, रामायण एवं पुराणों में गंगा को पुण्य सलिला, सिरतश्रेष्ठा एवं महानदी कहा गया है। एक सभ्यता के निर्माण में उसका अहम योगदान रह चुका है। गंगा कोई कहानी या किस्सा नहीं बल्कि वो जीवन का सार है। धर्म ग्रंथों में गंगा के बारे में कहा

जाता है "भगवान विष्णु के चरणों से निकल कर शिव की जटाओं में बसने वाली गंगा" जिनका अवतरण भागीरथ जी की घोर तपस्या के तत्पश्चात हुआ। गंगा का प्रथम वर्णन ऋगवेद में मिलता है। वर्तमान में उत्तराखंड में गंगोत्री से निकलकर भागीरथी नाम से जानी जाती है और आगे चलकर गंगा के नाम से जानी जाती है।


"माँ देवी भागीरथी, कहत पूरा जहाँन। है सभी धर्मों के लिए, ये अम्बु इक समान।।"

भारत और बंगलादेश दोनों देशों को मिलाकर लगभग 2510 किलोमीटर की दूरी तय करती हुई, उत्तराखण्ड राज्य में हिमालय से निकलकर पश्चिम बंगाल में बंगाल की खाड़ी में गिरती है। गंगा नदी की प्रमुख शाखा भागीरथी है जो गंगोत्री हिमनद से निकलती है। हिमालय से बहती हुई गंगा अपने साथ कई जड़ी-बुटियों को बहाकर लाती है जिसके कारण गंगा के जल में कीड़े नहीं लगते । गंगा कई राज्यों से होकर बहती है- जैसे उत्तराखण्ड में अलकनंदा और भागीरथी संयुक्त रूप से देवप्रयाग में मिलते हैं और वह गंगा कहलाती है। गंगा नदी उत्तरप्रदेश में भी कई जिलों से बहती है। प्रयाग में गंगा, यमुना और सरस्वती आपस में मिलती है जो संगम के नाम से जाना जाता है। यह प्रयागराज का प्रमुख तीर्थ स्थल है। आगे चलकर इसका बखान वाराणसी की गलियों में मिलता है।

वाराणसी में गंगा नदी एक वक्र लेती है, यहां गंगा नदी को उत्तर वाहिनी कहा जाता है। गंगा, बिहार राज्य के बीच से निकलकर उसे दो भागों में विभाजित करती है। भागलपुर में इसे "उत्तरायन गंगा" के नाम से भी जाना

जाता है। बंगाल के मुर्शीदाबाद जिले के गिरिया स्थान पर यह दो भागों में विभाजित हो जाती है और भगीरथी तथा पद्मा के नाम से जानी जाती है। बंगाल के ह्गली तक यह भागीरथी नाम से जानी जाती है। अंततः गंगा बंगाल की खाड़ी में मिल जाती है।

भारत का नाम और अस्तित्व गंगा के बिना अध्रा है। गंगा को उत्तर भारत की अर्थव्यवस्था का मेरूदण्ड कहा जाता है। यह सिर्फ लोगों के धार्मिक आस्था से हीं नहीं जुड़ी है अपितु लोगों की जीविका में भी इसका मुख्य योगदान है। गंगा ने अपने औषिध स्वरूप जल, खनिज भंडार, मछली व्यापार, नौकायन आदि से लोगों को जीविका का साधन दिया है। गंगा के आस-पास की मिट्टी बहुत ही उपजाऊ है, जो कई प्रकार की फसल उगाने में मदद करता है। इस क्षेत्र में धान, गन्ना, दाल, तिलहन, आलू एवं गेहूं आदि की खेती बहुत बड़े स्तर पर की जाती है। गंगा का भारत की अर्थव्यवस्था में प्रमुख योगदान है।

गंगा से फसलों का उत्पादन तो होता ही हैं, साथ-साथ यह मत्स्य पालन, व्यापार तथा पर्यटन से भी देश की अर्थव्यवस्था का एक महत्वपूर्ण साधन है। मत्स्य उद्योग की बात करें तो 375 मछली की प्रजातियाँ गंगा रिवर सिस्टम में पाई जाती है। पर्यटन की मानें तो हरिद्वार, प्रयागराज एवं वाराणसी हमारे देश के बड़े तीर्थ स्थल माने जाते हैं, जहाँ वर्ष भर तीर्थ यात्री आते हैं। कुंभ, महाकुंभ एवं मकर संक्रांति में गंगा स्नान के लिए बड़ी संख्या में लोग आते हैं और लोगों के व्यापार को बढ़ावा मिलता है। वाराणसी, हरिद्वार और संगम में होने वाली गंगा-आरती विदेशियों को भी अपनी ओर आकर्षित करती है।

इस सबके साथ-साथ इस पर बनाए गए बाँधों से बिजली का निर्माण भी किया जाता है, जैसे कोलकाता में फरक्का बांध तथा उत्तराखंड में टिहरी बाँध। यह बाँध गंगा नदी की प्रमुख सहयोगी नदी भागीरथी पर बनाया गया है।

औद्योगिकरण के इस युग में प्रदूषण की मार हमारी निदयाँ भी सह रहीं हैं। गंगा भी उससे नहीं बची है। गंगा की सफाई के लिए कई परियोजनाएँ एवं कार्यक्रम बनाए गए हैं। इन सब के अलावा "अर्थ गंगा" योजना भी चलाई जा रही है जिसके तहत "शून्य बजट" प्राकृतिक खेती करनी है, जिसमें नदी के दोनों ओर 10 किमी तक रासायनिक मुक्त खेती और गोबर-धन योजना के माध्यम से खाद के रूप में गोबर को बढावा देना शामिल है। साथ ही गंगा में हाट बाजार को बढावा देना, जहाँ लोग स्थानीय उत्पादन, आयुर्वेदिक जड़ी बृटियाँ आदि बेच सकते हैं। इसके अंतर्गत कई

परियोजनाएँ बनाई गई हैं। जैसे नमामि गंगे, गंगा ग्राम

परियोजना और राष्ट्रीय स्वच्छ गंगा मिशन।

"नमामि गंगे" एकीकृत संरक्षण मिशन है जिसकी घोषणा 2014 में की गई थी तथा इसे 2015 में लागू किया गया। इस कार्यक्रम को लागू करने के लिए रुपये 20 हजार लाख का बजट पास किया गया था। इस परियोजना को पूरा करने के लिए 5 वर्ष का समय दिया गया था। इस परियोजना के चर्चा में रहने का म्ख्य कारण "विश्व बैंक" द्वारा ऋण के रूप में 420 मिलियन दिया जाना था। "नमामि गंगे" एक "फ्लैगशिप स्कीम" है ताकि प्रदूषण के प्रभावी उन्मूलन और राष्ट्रीय नदी गंगा के संरक्षण एवं कायाकल्प के दोहरे उददेश्य को पूरा किया जा सके। इस परियोजना से गंगा नदी को प्नर्जीवित करने तथा गंगा को प्रदूषण से बचाने की बात कही गई है, जैसे औद्योगिक प्रयासों पर निगरानी किया जाना, लोगों को जागरूक करना, वनीकरण तथा रिवर फ्रंट डेवलेपमेंट यानि जल के **अ**परी भाग की सफाई करना है। इसके लिए **"स्वच्छ** गंगा फंड" का गठन 2014 में किया जो राष्ट्रीय स्वच्छ गंगा मिशन के अंतर्गत काम करता है। 2017 में

"नेशनल ग्रीन ट्रिब्यूनल" ने गंगा में किसी भी तरह के अपवहन पर रोक लगा दी है।

> "मिलिन न गंगा जी हुई, धोते धोते पाप पर उस कचरे से हुई, फेंके हम अरु आप।"

हाल ही में बिहार में "गंगाजल उद्वाह योजना" चलाए जाने की बात कही गई है। यह योजना बिहार सरकार के द्वारा जल जीवन हरियाली अभियान से जुड़ी है, जिसका उद्देश्य जलवायु परिवर्तन के दुष्प्रभावों को कम करना तथा उन जगहों तक गंगा का जल 149 किलो मीटर पाईप लाईन के द्वारा पहुंचाना जहाँ जल की किल्लत हो जैसे राजगीर, नवादा तथा बोधगया। साथ ही साथ बिहार में गंगा के किनारे बसे 13 जिलों में "आर्गेनिक फॉर्मिंग कॉरिडोर" बनाया गया है। इसके तहत जैविक खेती करने के लिए प्रोत्साहित किया जाएगा ताकि गंगा को प्रदूषण से बचाया जा सके।

"नमामि गंग कहे चलो, लगाओ जरा ध्यान। पावन है नीर सदा, देती जीवन दान।।"

चित्रः गंगाजल उद्वाह योजना

गंगा के एकीकरण तथा पुनर्जीवन के लिए भारत के लोगों की सहभागिता बहुत जरूरी है। अगर हम सब मिलकर गंगा को केवल जल नहीं अपितु एक संसाधन के रूप में

देखें तथा इसकी स्वच्छता के प्रति जागरूक हों, तभी गंगा जल के अस्तित्व को बचाया जा सकता है। इसके लिए हम सभी को संकल्प लेगा होगा तथा लोगों को भी

प्रेरित करना होगा। अपनी राष्ट्रीय नदी की सुरक्षा ही हमारा प्रथम कर्तव्य होना चाहिए।

"भारतीय सभ्यता की अविरल धारा प्रमुख रूप से हिंदी भाषा से ही जीवंत तथा सुरक्षित रह पाई है।" श्री अमित शाह (केन्द्रीय गृह मंत्री)

भारतीय ग्रिड का अपने पड़ोसी देशों के साथ विद्युतीय इंटर कनेक्शन

श्री राजेश कुमार, वरिष्ठ महाप्रबंधक: मार्गदर्शक; श्री मनीष रंजन केशरी, प्रबंधक; श्री श्याम सुंदर गोयल, प्रबंधक; श्री अनुपम कुमार, प्रबंधक; श्री अभिलाष ठाक्र, अभियंता; श्री अमित कुमार, अभियंता - सी.टी.यू.

भारत और उसके पड़ोसी देश

भारत, दक्षिण एशियाई क्षेत्र के सबसे बड़े देशों में से एक है जो नेपाल, भूटान, बांग्लादेश, श्रीलंका, म्यांमार आदि देशों के साथ अपनी सीमाएं साझा करता है। भारत को उत्तर व उत्तर पूर्वी भागों में हिमालय तथा अन्य पर्वत शृंखला, दक्षिण भाग में महासागर, पश्चिम और उत्तर-पश्चिमी भागों में रेगिस्तान, और शेष क्षेत्रों में मैदानी भूमि का उपहार प्राप्त है। अपनी भौगोलिक स्थिति के कारण, भारत दुनिया भर में और विशेष रूप से अपने पड़ोसी देशों के साथ विभिन्न वस्तुओं, सामग्रियों, सेवाओं

MATERIAL PROPERTY AND AND CORPORATE STATE OF THE PROPERTY OF T

चित्र 1: भारतीय ग्रिड के अंतर क्षेत्रीय इंटरकनेक्शन

आदि के व्यापार के लिए महत्वपूर्ण स्थान रखता है। इसके साथ ही भारत अपने कुछ पड़ोसी देशों के साथ विद्युत शक्ति के आयात और निर्यात के आदान-प्रदान में भी शामिल है।

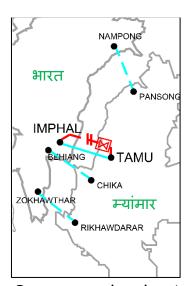
भारतीय ग्रिड और पड़ोसी देशों के साथ इंटरकनेक्शन

भारतीय ग्रिड दिसंबर 2013 से "वन नेशन-वन ग्रिड-वन फ्रीक्वेंसी" के रूप में कार्यरत है और देश के प्रत्येक हिस्से में 24x7 विश्वसनीयता के साथ अच्छी गुणवत्ता वाली बिजली की आपूर्ति कर रहा है। भारतीय ग्रिड दुनिया के सबसे बड़े विद्युत ग्रिडों में से एक है।भारतीय ग्रिड अपने मजबूत पारेषण और वितरण बुनियादी ढांचे, विभिन्न प्रकार के ईंधन के उत्पादन की उपलब्धता, स्वच्छ ऊर्जा के लिए समृद्ध नवीकरणीय उत्पादन और बिजली के प्रत्येक क्षेत्र में निजी साझेदारों की भागीदारी के लिए जाना जाता है, जिसके कारण भारत में विद्युत ग्राहकों को सस्ती और गुणवतापूर्ण बिजली मिलती है। भारतीय ग्रिड को एक ग्रिड बनाने के लिए भारतीय ग्रिड के विभिन्न क्षेत्रों को जोड़ने वाली अंतर क्षेत्रीय लाइनें महत्वपूर्ण भूमिका निभाती हैं। इन अंतर क्षेत्रीय रेखाओं को चित्र 1 में दिखाया गया है

भारतीय ग्रिड बांग्लादेश ग्रिड के साथ रेडियल और एसिंक्रोनस मोड के माध्यम से जुड़ा हुआ है चित्र 2,

भूटान के साथ सिंक्रोनस मोड के माध्यम से जुड़ा हुआ हैचित्र 4, नेपाल के साथ सिंक्रोनस और रेडियल मोड के माध्यम से जुड़ा हुआ है चित्र 3, और म्यांमार के साथ रेडियल मोड के माध्यम से से जुड़ा हुआ है चित्र 6। श्रीलंका चित्र 5 और म्यांमार (उच्च वोल्टेज स्तर पर) को भारतीय ग्रिड के साथ एसिंक्रोनस इंटरकनेक्शन मोड के माध्यम से जोड़ने की योजना पर कार्य चल रहा है|

चित्र 2: भारत-बांग्लादेश इंटरकनेक्शन


चित्र 3:भारत-नेपाल इंटरकनेक्शन

चित्र 4: भारत - भूटान इंटरकनेक्शन

चित्र 5: भारत - श्रीलंका इंटरकनेक्शन

चित्र 6: भारत-म्यांमार इंटरकनेक्शन

भारतीय ग्रिड के साथ सीमा पार इंटरकनेक्शन

मौजूदा क्रॉस बॉर्डर इंटरकनेक्शन, पड़ोसी देशों के साथ लगभग 4111 MW (1948 MW: भूटान, 1160 MW: बांग्लादेश, 1000 MW: नेपाल और 3 MW: म्यांमार) के बिजली ट्रान्सफर की सुविधा प्रदान कराते है। साथ ही विभिन्न पड़ोसी देशों के साथ कई पारेषण लाइनें निर्माणाधीन हैं। इन निर्माणाधीन क्रॉस बॉर्डर इंटरकनेक्शन, जो 2-3 वर्षों में अपेक्षित है, के चालू होने के साथ बिजली ट्रान्सफर में लगभग 4120 MW की वृद्धि अपेक्षित है जिसके परिणामस्वरूप कुल मिलाकर लगभग 8231 MW (4168 MW: भूटान, 1160 MW: बांग्लादेश, 2900 MW: नेपाल और 3 MW: म्यांमार) बिजली ट्रान्सफर संभव होगी।

इसके अलावा, विभिन्न उच्च क्षमता वाले 400 kV और 765 kV सीमा पार इंटरकनेक्शन भी योजना के कई चरणों में निर्माणाधीन हैं जो पड़ोसी देशों के साथ अतिरिक्त बिजली ट्रान्सफर क्षमता को सुगम बनाएंगे। एचवीडीसी लिंक के जरिए भारत-श्रीलंका और भारत-म्यांमार इंटरकनेक्शन पर भी चर्चा चल रही है।

सीमा पार इंटरकनेक्शन के लाभ

भारतीय ग्रिड में अधिकांश उत्पादन क्षमता ताप विदय्त और नवीकरणीय ऊर्जा पर आधारित है। पड़ोसी देश नेपाल और भूटान प्रमुख रूप से जल विद्युत पर आधारित हैं, जो मौसमी बदलाव पर काफी निर्भर करते हैं। बांग्लादेश में उत्पादन मुख्य रूप से जीवाश्म ईंधन (तेल और गैस) पर निर्भर है। श्रीलंका मुख्य रूप से जल विद्युत और ताप विद्युत पर आधारित है। म्यांमार में ताप विद्युत और जल विद्युत दोनों का लगभग समान प्रतिशत है (लगभग 47-49%)। दक्षिण एशियाई और दक्षिण पूर्व एशियाई ग्रिड की वर्तमान संचयी स्थापित क्षमता लगभग 800 GW है, जिसमे से लगभग 50% भारत में है। 2030 तक, 500 GW के गैर-जीवाश्म ईंधन आधारित उत्पादन को स्थापित करने के लक्ष्य के साथ भारत में बड़ी मात्रा में नवीकरणीय ऊर्जा उत्पादन स्थापित की जा रही है। इसके अलावा, दक्षिण एशियाई और दक्षिण-पूर्व एशियाई क्षेत्र के अन्य देशों में भी नवीकरणीय ऊर्जा उत्पादन की स्थापना की जा रही है। उक्त क्षेत्रों में समय की विविधता, ऊर्जा मिश्रण में अंतर, और विभिन्न मौसमों के कारणवंश ताप विद्युत, नवीकरणीय ऊर्जा, जल विद्युत आदि जैसे विभिन्न स्रोतों की बिजली के व्यापार के अवसर है।

इस पत्रिका में प्रकाशित लेखों में दिए गए विचार संबंधित लेखक के हैं । के.वि.प्रा. का इससे सहमत होना आवश्यक नहीं है ।

केंद्रीय विद्युत प्राधिकरण के समाचार व उपलब्धियाँ

- 1. के.वि.प्रा.द्वारा तीन महत्वपूर्ण विनियमों की अधिसूचना जारी की गयी:
 - 1.1.विद्युत संयंत्रों और विद्युत लाइनों के निर्माण के लिए तकनीकी मानक विनियम 23.12.2022 को अधिसूचित किये गये: इसमे निर्माण सम्बंधित मानको को और बेहतर किया गया जिससे ऊर्जा उत्पादन सयंत्रो की दक्षता एवँ सुरक्षा को बढाया जा सके;
 - 1.2.विद्युत संयंत्रों और विद्युत लाइनों के निर्माण, संचालन और रखरखाव के लिए सुरक्षा आवश्यकताएं (संशोधन) विनियम 16.11.2022 को अधिसूचित किये गये: इससे विद्युत संयंत्रों और विद्युत लाइनों के निर्माण, संचालन और रखरखाव और अधिक स्रक्षित किया जा सकेगा;
 - 1.3.कोयला आधारित ताप विद्युत उत्पादन इकाइयों का लचीला संचालन विनियम 30.01.2023 को अधिसूचित किये गये: इससे ग्रिड मे बढते हुए अक्षय ऊर्जा श्रोतो को बेहतर रूप से संचालित किया जा सकेगा।

- 2. वातावरण मे पराली के द्वारा होने वाले प्रदूषण को कम करने हेतु अब तक लगभग 1 लाख टन बायोमास पेलेट को फ़रवरी 2023 तक ताप विद्युत केंद्रों में को-फायर किया जा चुका है।
- 3. कोयला आधारित ताप विद्युत उत्पादन इकाइयों के लचीले संचालन हेतु आने वाले वर्ष 2030 तक का रोड़ मैप का फ़रवरी 2023 में प्रकाशन किया गया।
- 4. पब्लिक चार्जिंग स्टेशन द्वारा ईवी उपभोक्ताओं से वसूले जाने वाले सेवा शुल्क की अधिकतम सीमा की रिपोर्ट विद्युत मंत्रालय को प्रस्त्त की गई।
- 5. बेंचमार्क ईसीआर की गणना: दिनांक 05.05.2022 से 31.12.2022 तक धारा 11 निर्देशों के तहत बेंचमार्क ईसीआर की गणना।
- 6. मासिक बाजार निगरानी रिपोर्ट को द्विभाषीय कर दिया गया है। इसके तहत सितम्बर और अक्टूबर 2022 की रिपोर्ट जारी कर दी गई है।
- 7. डेटा केंद्रों को बिजली की आपूर्ति को सुविधाजनक बनाने के लिए विद्युत मंत्रालय द्वारा गठित तकनीकी सिमिति ने नवंबर 2022 जनवरी 2023 के बीच दो बैठकें कीं। चयिनत डिस्कॉम, बीईई, ग्रिड-इंडिया, ट्राई, एमएनआरई सिहत हितधारकों के साथ विचार-विमर्श किया गया। तकनीकी सिमिति ने अपनी सिफारिश को अंतिम रूप दिया और एक रिपोर्ट तैयार की, जो डेटा केंद्रों को बिजली की आपूर्ति को सक्षम करने और डेटा केंद्रों की स्थापना के दौरान हितधारकों द्वारा उठाए गए मुद्दों का ध्यान रखने के लिए उपचारात्मक उपायों का सुझाव देती है। रिपोर्ट विद्युत मंत्रालय को सौंप दी गई है।
- 8. डीएसएम विनियम से संबंधित मुद्दों को देखने के लिए विद्युत मंत्रालय द्वारा गठित समिति ने फिक्की के हितधारकों द्वारा उठाई गई चिंताओं पर विचार किया है। समिति का मोटे तौर पर मानना है कि आरई जेनरेटरों को लगभग 2-3 वर्षों के लिए कुछ छूट प्रदान की जा सकती है। समिति की सिफारिशों के आधार पर, विदयुत मंत्रालय ने केन्द्रीय विद्युत विनियामक आयोग को 03 फरवरी, 2023 को अपने विनियम में संशोधन करने का निर्देश दिया था। केन्द्रीय विद्युत विनियामक आयोग ने इस सलाह पर विचार करते हुए 06 फरवरी, 2023 को सम्बंधित आदेश जारी किया है।
- 9. मैसर्स एनएचपीसी लिमिटेड द्वारा जम्मू-कश्मीर में उरी-। चरण-॥ जलविद्युत परियोजना (240 मेगावाट) की डीपीआर पर प्राधिकरण द्वारा सहमति दी गई।
- 10. मैसर्स एनएचपीसी लिमिटेड की सिक्किम में रंगित-IV जलविद्युत परियोजना (120 मेगावाट) के संबंध में प्राधिकरण द्वारा परिवर्तन ज्ञापन को मंजूरी दी गई थी।
- 11. मैसर्स जेकेएसपीडीसी लिमिटेड की जम्मू और कश्मीर में नई गांदरबल जलविद्युत परियोजना (93 मेगावाट) के मूल्यांकन के पुनर्वैधीकरण को प्राधिकरण द्वारा मंजूरी दी गई थी।
- 12. जलविद्युत परियोजनाओं की शीघ्र सहमति के लिए के.वि.प्रा. में "सिंगल विंडो क्लीयरेंस सेल" का गठन किया गया।
- 13. के.वि.प्रा. द्वारा जारी सहमति के बाद पम्प स्टोरेज परियोजनाओं (पीएसपी) सहित परियोजनाओं की संरचनाओं/उपकरणों के डिजाइन में परिवर्तन की जांच और अनुमोदन के लिए संशोधित दिशानिर्देश जारी किये गए।
- 14. फरवरी 23 के दौरान जलविद्युत परियोजनाओं में ढलान स्थिरता के मुद्दों पर विचार करने के लिए दिशानिर्देश तैयार किए गए हैं।

- 15. जलविद्युत क्षेत्र में अनुबंधों के लिए "अनुबंध के तरीके और अनुबंध खंड में सुधार" पर समिति की रिपोर्ट विद्युत मंत्रालय को जनवरी 23 के दौरान प्रस्त्त की गई है।
- 16. तिमाही के दौरान हिमालयी भूविज्ञान में टीबीएम के उपयोग पर मसौदा रिपोर्ट तैयार की गई है।
- 17. पुनातसांगच्-। जलविद्युत परियोजना के लिए अंतर सरकारी समूह का गठन जनवरी 23 के दौरान परियोजना को सफलता दिलाने के लिए किया गया था। अब तक दो बैठकें हो चुकी हैं। आईजीजी की तीसरी बैठक मार्च 23 के अंतिम सप्ताह में होनी है और उसके बाद रिपोर्ट सौंपे जाने की संभावना है।
- 18. आपदा प्रबंधन पर राष्ट्रीय सम्मेलन के.वि.प्रा./सीबीआईपी द्वारा जनवरी 23 के दौरान आयोजित किया गया।
- 19. दो प्रमुख बहुउद्देशीय जलविद्युत परियोजनाएं अर्थात दिबांग एमपीपी (2880 मेगावाट) और लखवार एमपीपी (300 मेगावाट) और एक जलविद्युत परियोजना अर्थात सुन्नी बांध (382 मेगावाट) को कार्य सौंपने के बाद निर्माण कार्य श्रु कर दिया गया है।
- 20. जलविद्युत ठेकों में विवाद के एक मामले को तिमाही के दौरान निष्पक्ष अभियंता की सुलह समिति द्वारा सुलझाया गया है। के.वि.प्रा. द्वारा अब तक कुल 6 मामले आवंटित किए गए हैं और 2 मामले आज तक सुलझाए जा चुके हैं।
- 21. एमपी 30 गांधी सागर पीएसपी की डीपीआर मार्च 2023 में तैयार कर ली गई है और विकासकर्ता द्वारा सहमित के लिए के.वि.प्रा. को प्रस्तुत की जानी है।
- 22. देश में पंप स्टोरेज परियोजनाओं (पीएसपी) के विकास को बढ़ावा देने के लिए मसौदा दिशानिर्देश तैयार किए गए हैं और मार्च 2023 में विद्युत मंत्रालय को प्रस्तुत किए गए हैं।
- 23. जल विद्युत दर सूची की व्यवहार्यता पर विचार-विमर्श करने के लिए संयुक्त सचिव (जल विद्युत) की अध्यक्षता में समिति की रिपोर्ट तैयार की गई है और मार्च 2023 में विद्युत मंत्रालय को प्रस्तुत की गई है।
- 24. केंद्रीय विद्युत प्राधिकरण के प्रभागों एवं अनुभागों द्वारा 30 दिसम्बर, 2022 को समाप्त तिमाही में राजभाषा अधिनियम, 1963 की धारा 3(3) के अंतर्गत जारी कागजात, हिंदी में प्राप्त पत्रों के उत्तर, अंग्रेजी में प्राप्त पत्रों के उत्तर 'क', 'ख', 'ग' क्षेत्रों को भेजे गए मूल पत्रों तथा फाईलों पर हिंदी में कार्य की स्थिति के अनुसार मूल हिंदी पत्राचार का प्रतिशत क्रमशः 95.83, 93.65 तथा 92.17 प्रतिशत रहा है।
- 25. अध्यक्ष, के.वि.प्रा. एवं नगर राजभाषा कार्यान्वयन समिति, दक्षिण दिल्ली -2 की अध्यक्षता में एक दिसम्बर, 2022 को 65 कार्यालयों की नराकास, दक्षिण दिल्ली -2 की बैठक का आयोजन किया गया ।
- 26. वितरण कंपनियों द्वारा ट्रांसफार्मर के संचालन और रखरखाव से सम्बन्धित दतावेज: वितरण ट्रांसफार्मर की विफलता दर को कम करने और बिजली आपूर्ति की विश्वसनीयता बढ़ाने के लिए प्राधिकरण द्वारा "दिशानिर्देश और वितरण ट्रांसफार्मर के संचालन और रखरखाव के लिए सर्वोत्तम अभ्यास" पर एक दस्तावेज तैयार किया। ये दिशानिर्देश 3 मार्च 2023 को माननीय ऊर्जा और नवीन और नवीकरणीय ऊर्जा मंत्री द्वारा जारी किए गए है।
- 27. 4 मार्च 2023 को इंडिया हैबिटेट सेंटर, दिल्ली में नेशनल लाइनमैन दिवस समारोह का आयोजन किया गया, जिसमें के.वि.प्रा. और टी.पी डी.डी.एल. द्वारा सम्पूर्ण देश से चुने हुए लाइनमैनस और उनके सुपरवाईजर्स को उनकी उत्कृष्ट सेवाओं के लिए सम्मानित किया गया। मैन्अल ऑफ ट्रांसिमशन प्लानिंग क्राइटेरिया, 2023
- 28. मैनुअल ऑफ ट्रांसिमशन प्लानिंग क्राइटेरिया, 2023 सन 1985 में पहली बार के.वि.प्रा द्वारा ट्रांसिमशन प्लानिंग मानदंड पर मैनुअल लाया गया था। तत्पचात सन 1994 एवम् 2013 में इसमें संशोधन किया गया। केंद्रीय विद्युत्

प्राधिकरण (के.वि.प्रा.) द्वारा हितधारकों के परामर्श से "मैनुअल ऑफ ट्रांसिमशन प्लानिंग क्राइटेरिया, 2023 को तैयार किया गया। इस मैनुअल में प्लानिंग फिलॉसफी, सिस्टम मॉडिलंग, प्लानिंग मार्जिन, विभिन्न सिस्टम स्टडीज, रिलायबिलिटी मानदंड, सबस्टेशन मानदंड, नवीकरणीय ऊर्जा संयंत्र के लिए मानदंडो का उल्लेख है। "मैनुअल ऑफ ट्रांसिमशन प्लानिंग क्राइटेरिया, 2023" के रूप में ट्रांसिमशन प्लानिंग को बड़े पैमाने पर नवीकरणीय उत्पादन क्षमता में वृद्धि, लोड की वृद्धि, राईट ऑफ़ वे (RoW), तकनीकी उन्नित के विवरण को व्यापक रूप से उपलब्ध कराने का प्रयास किया गया है।

29. विद्युत सुरक्षा के बारे में जागरूकता फैलाने के लिए जनवरी से मार्च 2023 के दौरान देश के विभिन्न हिस्सों में 11 विद्युत सुरक्षा कार्यशालाओं का आयोजन किया गया।

"भाषा के माध्यम से संस्कृति सुरक्षित रहती है। चूँकि भारतीय एक होकर सामान्य सांस्कृतिक विकास करने के आकांक्षी हैं, अतः सभी भारतीयों का अनिवार्य कर्तव्य है कि वे हिंदी को अपनी भाषा के रूप में अपनाएँ।।" - डॉ. भीमराव अम्बेडकर

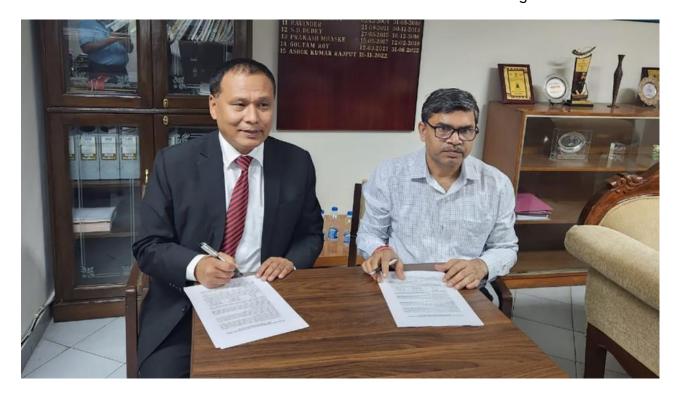
फोटो फीचर - केंद्रीय विद्युत प्राधिकरण

अध्यक्ष महोदय, सदस्य एवं वरिष्ठ अधिकारी राजभाषा कार्यान्वयन समिति की बैठक में एवं हिंदी कार्यशाला का आयोजन

माननीय मंत्री जी द्वारा PUSHP पोर्टल के उद्घाटन के अवसर पर अध्यक्ष महोदय और मुख्य अभियंता एनपीसी

जी20 ईटीडब्ल्यूजी की बैंगलोर में आयोजित बैठक में प्रतिभागिता करते अध्यक्ष महोदय

नई दिल्ली में इंडो डेनमार्क पार्टनरिशप कार्यक्रम के दौरान - सदस्य (तापीय) एवं माननीय ऊर्जा, जलवायु और उपयोगिता मंत्री, डेनमार्क



14वीं भारत-नेपाल पावर एक्सचेंज कमेटी की बैठक - 17 मार्च, 2023 को के. वि. प्रा., नई दिल्ली में सदस्य(विद्युत प्रणाली) की सहअध्यक्षता में आयोजित की गई थी। पीईसी की बैठक में बिहार, उत्तर प्रदेश और उत्तराखंड राज्यों से नेपाल को निर्यात होने वाली बिजली की दरों को वर्ष 2017 से 2024 तक के लिए निर्धारित किया गया। साथ ही, पीईसी तंत्र के तहत लंबित बिलो और बकाया के भुगतान पर निर्णय लिया गया।

नेपाल इलेक्ट्रिसिटी अथॉरिटी (एनईए) के कार्यकारी निदेशक श्री कुलमन घीसिंग और के.वि.प्रा. से श्री अशोक कुमार राजपूत ने सदस्य (विद्युत् प्रणाली) - नेपाल-भारत विद्युत विनिमय समिति (पीईसी) की 14वीं बैठक में सीमा पार बिजली व्यापार की नई दर के संबंध में एक समझौते पर हस्ताक्षर करते हुए

01.01.2023 को नव वर्ष के अवसर पर के.वि.प्रा. के भूतपूर्व अध्यक्षों एवं सदस्यों के साथ वर्तमान अध्यक्ष श्री घनश्याम प्रसाद जी एवं अन्य विरष्ठ अधिकारी - एक इंटरैक्टिव सत्र

बिम्सटेक एनर्जी सेंटर की बैठक -

- बिम्सटेक ऊर्जा केंद्र के गवर्निंग बोर्ड (GB-BEC) की पहली बैठक 27 फरवरी 2023 को बेंगलुरु, भारत में आयोजित हुई। इस बैठक में श्री घनश्याम प्रसाद, अध्यक्ष, के.वि.प्रा., विद्युत मंत्रालय, भारत सरकार, को बिम्सटेक एनर्जी सेंटर के पहले कार्यकारी निदेशक के रूप में नियुक्त किया। भारत सरकार और बिम्सटेक सचिवालय के बीच बिम्सटेक एनर्जी सेंटर के मुख्यालय को भारत में स्थापितं करने के संबंद्ध में समझौते के मसौदे को अंतिम रूप दिया गया और इसे बिम्सटेक स्थायी कार्य समिति की सातवीं बैठक में विचार के लिए रखने की सिफारिश की गई। उल्लेखनीय है की मुख्यालय समझोते का यह मसौदा केंद्रीय विदयुत् प्राधिकरण (के.वि.प्रा.) दवारा बनाया गया था।
- बिम्सटेक सदस्य देशों को बैठक में अवगत कराया गया कि बीईसी के कार्यालय को अस्थायी रूप से केंद्रीय विद्युत
 अनुसंधान संस्थान (CPRI), बेंगलुरु में स्थापित किया जा रहा है।
- इसके अतिरिक्त बेंगलुरु में नए एसआरएलडीसी भवन (सीपीआरआई कैंपस) के भूतल पर बिम्सटेक एनर्जी सेंटर को स्थायी रूप से स्थपित करने की योजना के बारे में भी अवगत करया गया।
- बैठक में के.वि.प्रा. द्वारा बिम्सटेक एनर्जी सेंटर के लिए तैयार गये "रूल्स ऑफ़ प्रोसीजर" को विचार विमर्श के लिए रखा गया।

विद्युत वाहिनी तृतीय अंक (जल-विद्युत विशेषांक) केन्द्रीय विद्युत प्राधिकरण अप्रैल 2023 बीजीआईसीसी बैठक -

- 28 फरवरी 2023 को भारत के बेंगलुरु में बिम्सटेक ग्रिड इंटरकनेक्शन समन्वय समिति (बीजीआईसीसी) की दूसरी बैठक आयोजित की गईं जिसकी श्री घनश्याम प्रसाद, अध्यक्ष, के.वि.प्रा, विद्युत मंत्रालय, भारत सरकार, को बीजीआईसीसी की द्वितीय बैठक के अध्यक्ष के रूप में चुना गया।
- केंद्रीय विद्युत् प्राधिकरण (के.वि.प्रा.) के द्वारा बनाये गये "बिजली के प्रसारण के लिए बिम्सटेक नीति" और " व्यापार, बिजली के आदान-प्रदान और टैरिफ तंत्र के लिए बिम्सटेक नीति," प्रारूप को बैठक में प्रस्तुत किया और एक चर्चा पत्र के रूप में माना गया।

विद्युत वाहिनी तृतीय अंक (जल-विद्युत विशेषांक) केन्द्रीय विद्युत प्राधिकरण अप्रैल 2023 नेशनल लाइनमैन दिवस समारोह में अध्यक्ष महोदय एवं सदस्य (विद्युत् प्रणाली)

विद्युत वाहिनी तृतीय अंक (जल-विद्युत विशेषांक) केन्द्रीय विद्युत प्राधिकरण अप्रैल 2023 विद्युत सुरक्षा कार्यशालाओं में प्रतिभागिता करते कार्मिक

बीपीसीएल बीना रिफाइनरी

आरजीपीपीएल, दाभोल

गेल, गांधार

टाटा प्रोजेक्ट्स, चेन्नई

एनटीपीसी कुडगी

विशाखापत्तनम रिफाइनरी में एचपीसीएल