

No. 1/9/08-SP&PA/

Date: 26-MAY-2009

-As per List enclosed-

<u>विष्प/Subject:</u> 27th meeting of the Standing Committee on Power System Planning of Northern Region

महोदय/Sir,

The Agenda Note including additional items for 27th Standing Committee Meeting on Power System Planning of Northern Region, scheduled to be held on 30.5.2009 at Nainital, have already been uploaded on CEA website.

Following additional agenda items have been received from RRVNL and HPPTCL:

<u>RRVPNL</u>

RRVPNL vide letter dated 6.2.2009 had submitted its proposal to lay 765 kV transmission system in Rajasthan to evacuate power from proposed Super Critical Thermal Power Stations at Chhabra (2x660 MW), Banswara (2x660 MW) and Suratgarh (2x660 MW). The proposal included load flow studies corresponding to 2013-14 conditions. Subsequently, RRVPNL revised proposed generation capacity and time frame and submitted vide letter dated 20.5.2009. As per revised proposal, load flow conditions corresponding to 2016-17 has been considered for evacuation system of proposed Super Critical Thermal Power Stations at Chhabra (2x660 MW), Kewai (2x330 MW), Banswara (3x660 MW) and Suratgarh (3x660 MW). The revised proposal is enclosed as Annexure-III for information of members of the Committee.

HPPTCL

HPPTCL vide fax letter dated 22.5.2009 has requested for following 220 kV bays for their utilization:

- (i) 2 nos. of bays at Banala i.e. 400 kV Parbati Pooling Station for termination of
 220 kV D/C Allain Duhangan Nalagarh line at Banala
- (ii) 2 nos. of bays for termination of proposed 220 kV D/C line from 220/132 kV Bajora S/S at Banala

HPPTCL has also informed that above 4 nos. of 220 kV bays are in addition to 4 nos. of 220 kV bays required for termination of 2x220 kV (Quad) D/C line from Chenab Basin, as per CEA's Master Plan.

Clarifications

Regarding agenda-4 entitled "Evacuation of Power from Kutehr HEP (260 MW) in the upstream of Chamera III HEP", it is to inform that Member (PS), CEA had taken a meeting on 18.5.2009 to review the evacuation system for Budhil HEP (70 MW) in Himachal Pradesh because HPPTCL could not build designated pooling station in time. Keeping urgency of Budhil HEP (likely by March 2010), following decisions were taken:

(i) Lanco GPPL may preferably LILO circuit of 220 kV D/C Chamera II – Chamera III line being constructed by PGCIL at their generating station as only one bay at Chamera III was available. With this, the final configuration for Budhil HEP would be 220 kV S/C Budhil-Chamera III & 220 kV S/C Budhil-Chamera II. This arrangement would provide reliability. The other option is to construct 220 kV S/C (zebra conductor) from Budhil HEP to Chamera III but this alternative suffers from loss of reliability in case of outage of the line and may result into bottling of generation at Budhil HEP. It was for Lanco GPPL to decide which alternative to adopt after weighing the risks. In either option, Budhil HEP would be connected to Chamera III by dedicated 220 kV link. However, constructing S/C line would be suboptimal from ROW consideration.

- (ii) It was decided that Pooling station at Lahal may be constructed as 400/220 GIS substation by HPPTCL. Lahal pooling station would be built by HPPTCL in phased manner in the time frame of remaining future hydro projects at Ravi Basin, namely Bharmour (45 MW), Kugti (45 MW), Hadsar (60 MW), Kutehar (260 MW), Bajoli Holi (200 MW) and Bara Bangal (200 MW). 220 kV portion of the substation would be commissioned first and then 400 kV Lahal-Chamera II Pooling point D/C charged at 220 kV. This would reduce ROW requirement as desired by the Forest Department. The line could be charged to 400 kV with development of upstream hydro projects.
- (iii) As Budhil HEP would be connected to Chamera III switchyard, HPPTCL should construct Lahal pooling station in the time frame of Kutehar HEP, being developed by JSW Energy which is likely to be commissioned next. Member (PS) cautioned that if HPPTCL failed to do so then they will again face same problem and this would hamper development of hydro potential in the State.
- (iv) Shri Bheshtoo informed that few 33 kV and 11 kV lines have been planned for evacuation of power from few small hydro projects in Ravi Basin. The magnitude of total generation was around 50 MW. Member (PS) stated that matter can not be discussed without full details and he advised that small hydro power should be brought to the nearest pooling station. It would not be optimal to develop a new 220 kV pooling station for such small generation.
- (v) CEA observed that in case of connectivity at Chamera III, Lanco GPPL have to only pay the regional transmission charges and losses and therefore pancaking of transmission charges/losses would be avoided.

A copy of the minutes of the meeting is enclosed as Annexure-IV for reference.

Naresh Bhandari Director

Rajasthan Rajya Vidyut Prasaran Nigam Ltd. Regd.Office:Vidyut Bhawan, Jyoti Nagar, Janpath, Jaipur

Phone, Number:2740373 Fax No.:0141-2740794 * E-MAIL: ppmrvpn@sancharnet.in Jaipur,Dt: 2015/60

No.RVPN/SE(P&P)/PSS/D. 180

Shri V. Ramakrishna Momber Secretary (PS) Central Electricity Authority, Sewa Bhawan, R.K. Puram, New Delhi - 110066.

> Sub: Agenda Item of RVPNL to be included in 27th meeting of the Standing Committee on Transmission System Planning of NR

Dear Sir,

As per discussion of RVPNL Engineers with CEA officers on dated 15-5-09 at Sewa Bhawan, New Delhi, the revised Load Flow Studies have been conducted for the condition corresponding to 2016-17 for Evacuation System of the newly proposed Super Critical Thermal Power Stations at Chhabra (2*660 MW), Kewai (2*330 MW), Banwara (3*660 MW) and Suratgarh (3*660 MW).

Detailed proposal along with load flow study results is enclosed for inclusion in the 27th meeting of the Standing Committee on Transmission System Planning of NR for discussion.

> 5A2 21.5.001

With regards.

Your's faithfully, (B.N. Saini) CHIEF ENGINEER (PPM&R)

Encl:

- 1. Appendix-1: Justification Note
- 2. Appendix-2: Cost Estimate
- 3. Appendix-3:Load Generation Balance Report

<u>Proposed Evacuation System of Chhabra Super Critical TPS (2*660</u> <u>MW) & Kawai TPS (2*330MW)</u>

Background

In Baran district of Rajasthan at Chhabra TPS, there are 2 units of 250 MW (under Stage I- Phase I) at commissioning stage and additional 2 units of 250 MW (under Stage I- Phase II) are under construction. RVUN has further stipulated 2x660MW at Chhabra TPS under Stage II and 4x330 MW Power Plant at Kawai TPS (a Generating Plant which would be very close to Chhabra TPS) under IPP sector is also in advance stage of finalization.

Existing/Approved Transmission System at Chhabra TPS

The approved 2xD/C 400 kV line from Chhabra TPS to 400/220 kV GSS at Dahra, Bhilwara and Hindaun are sufficient for evacuation of 4x250 MW power even under various contingencies. Further, for evacuation of power of approx. 1980 MW i.e. Chhabra TPS (2x660 MW) + Kawai TPS (2x330 MW-allocation to Rajasthan) would require new Transmission system.

<u> Planning Criteria</u>

- For evacuation of power of approx. 1980 MW from Chhabra TPS (2x660 MW) and Kawai TPS (2x330 MW- allocation to Rajasthan) at least 3 Nos. of 400 kV D/C lines on Twin Moose would be required. Laying of 3xD/C 400 kV lines on Twin Moose would pose serious Right Of Way problem, therefore, in order to reduce the environmental impact and land use, we have designed the Evacuation System with minimum number of transmission lines i.e. 2xS/C 765 kV.
- The tentative Cost Estimates of the Evacuation System at 765 kV voltage level on Quad Bersimis and 400 kV voltage level on Quad Moose indicate that the cost estimates are comparable, hence 765 kV option has been recommended for evacuation of generation from both Chhabra TPS (2x660 MW) and Kawai TPS (2x330 MW). Tentative Cost Estimates for Evacuation System at 765 kV voltage level and Evacuation System at 400 kV voltage level are placed at **Annexure I(A) and I(B)** respectively.
- Further, under future generation expansion at Chhabra TPS or/and Kawai TPS 2xS/C 765 kV lines would continue to suffice, hence the proposal of 765 kV would become more economical as compared to 400 kV proposal.
- The step up generation at Chhabra TPS and Kawai TPS would be 400 kV voltage level. Both the generators would be connected through 400 kV D/C lines to the proposed 400/765 kV Pooling Station at Chhabra (a location in between Chhabra TPS and Kawai TPS).

- The length of the interconnecting transmission lines involved would be of the order of 350 kms from the generating stations at Chhabra and Kawai in Baran district to major load centers at Jaipur. Therefore, in the Evacuation System on 765 kV voltage level, 400 kV transmission lines from the 765/400 kV GSS at Jaipur(South-PG) would involve laying down of shorter 400 kV transmission lines vis-à-vis in the Evacuation System on 400 kV voltage level. This proposal would reduce the transmission losses in the system.
- •765 kV 2xS/C transmission lines have been proposed to provide sufficient redundancy and reliability under N-1 contingencies of transmission lines.
- •As the development of generation projects would take place in phased manner, it is expected that during initial years of operation, 765 kV transmission line may be lightly loaded. Thus in order to obviate the onerous task of reactive power management, 765 kV transmission line would be charged on 400 kV voltage level till the generators would generate 750 1000 MW.
- 765 kV transmission line would be generating large capacitive charging MVAR and, therefore, to limit over voltages under lightly loaded condition and also to limit switching over voltages, 3x80/110 MVAR, 765 kV line/bus type shunt reactors have been proposed.
- Keeping the above facts in mind, it is felt that there is a need to increase the AC transmission voltage beyond 400 kV and explore the possibility of establishing 765 kV network in Rajasthan. Now a days evacuation and transfer of bulk power over 765 kV transmission line is considered to be better option by PowerGrid in India and other countries.

SNo.	Transmission System	Line Length/ No.	Transf. Capacity
Α	Chhabra TPS (2*660 MW)		
1	400 kV 2xD/C (Quad Moose) Chhabra TPS - Chhabra Pooling Station line	10 kms, 2xD/C	
2	LILO of one ckt of 400 kV D/C+S/C Chhabra TPS - Dahra line at Chhabra Pooling Station	10 kms, D/C	
3	LILO of one ckt of 400 kV D/C Kalisindh TPS - Dahra line at Chhabra Pooling Station	50 kms, D/C	
4	1*1500 MVA,765/400 kV GSS at Chhabra Pooling Station (RVPN)	1 No.	1500 MVA
5	765 kV 2xS/C Chhabra TPS - Jaipur(South) line	330 kms 2xS/C	
6	1*1500 MVA,765/400 kV GSS at Jaipur(South)	1 No.	1500 MVA
7	3*80 MVAR (Single Phase) Line Reactors at both ends of 765 kV 2xS/C Chhabra PP - Jaipur(South) lines	4 Sets	
8	3*110 MVAR (Single Phase), 765 kV Bus Reactors at Jaipur(South)	1 Sets	
9	10 kM LILO of 400 kV S/C Hindaun-Heerapura line at Jaipur(South)	10 kms, D/C	
10	10 kM LILO of one circuit of 400 kV D/C Chhabra TPS-Heerapura line at Jaipur(South)	10 kms, D/C	
11	10 kM LILO of one circuit of 400 kV D/C Ajmer-Heerapura line at Jaipur(South)	10 kms, D/C	
12	220 kV D/C interconnections at Jaipur (South)	50 kms, D/C	
	TOTAL(A)		
В	Kawai TPS (2*330 MW)		
1	400 kV D/C (Quad Moose) Kawai TPS - Chhabra Pooling Station line	20 kms, D/C	

Proposed Evacuation for Chhabra TPS(2x660 MW) & Kawai TPS(3x 330 MW)

<u>Evacuation System of Suratgarh Super Critical Thermal Power</u> <u>Station (3*660 MW)</u>

<u>Introduction</u>

The State Govt. has accorded 'in principle' approval for 2*660 MW at Suratgarh TPS under Extension Stage V (Unit 7 & 8) in Sriganganagar district to be set up by Rajasthan Rajya Vidyut Utpadan Nigam Ltd. (RVUNL). Furthermore, an additional 1*660 MW is also anticipated by RVUNL. Therefore, RVPNL have to design the Evacuation System for 3 * 660 MW at Suratgarh TPS.

Existing Transmission System at STPS

At Suratgarh TPS, there are 5 units of 250 MW under Stage I- III and one unit of 250 MW under Stage IV has been synchronized on 31st March '2009. The existing Evacuation System at STPS is as under:

SNo	Generator	Transmission System			
А	STPS Stage I-	2*S/C 400 kV STPS – Ratangarh line			
	III (5*250 MW)	3*315 MVA, 400/220 kV GSS at Ratangarh			
		2*S/C 220 kV STPS – Suratgarh line			
		1*D/C 220 kV STPS – Ratangarh line			
		1* S/C 220 kV STPS – Bikaner line			
В	STPS Stage IV	1*S/C 400 kV STPS – Bikaner line			
	(1*250 MW)	(to be initially charged on 220 kV) works under progress			
	````	1* S/C 220 kV STPS – Bhadra line			

Now RVUN has further stipulated 3x660 MW at Suratgarh Super Critical TPS and the quantum of power to be evacuated would be 1980 MW. Since the existing 3 Nos. of 400 kV lines and 6 Nos. of 220 kV do not have sufficient spare capacity to evacuate additional 1980 MW, hence new lines would have to be laid.

## Criteria for selecting the voltage level for new evacuation system

The tentative Cost Estimates for the evacuation on 765 kV voltage level (**Annexure II(A)**) and the evacuation on 400 kV voltage level (**Annexure II(B)**) indicate that the evacuation proposal on 765 kV voltage level would be more economical as compared to 400 kV voltage level on Quad Moose.

#### Assumptions for designing the evacuation system

- 1. The step-up generator voltage at Suratgarh TPS would be 765 kV.
- 2. 1x1500 MVA, 400/765 kV ICT has been proposed at Suratgarh TPS.
- 3. For ensuring the stability of the proposed Power Evacuation System under N-1 outage of transmission line, 2 Nos. S/C of 765 kV lines have been proposed.
- 4. 2xS/C 765 kV Suratgarh TPS Neemrana lines with 1x1500 MVA, 765/400 GSS at Neemrana have been proposed, which would benefit the growing load centers at NCR (Alwar district).

## Proposed Evacuation System for Suratgarh TPS (3x660 MW)

SNo.	Transmission System	Line Length/No	Transf. Capacity
1	1*1500 MVA,765/400 kV ICT at Suratgarh TPS	1 No.	1500 MVA
2	765 kV 2xS/C Suratgarh TPS - Neemrana line	350 kms 2xS/C	
3	1*1500 MVA,765/400 kV GSS at Neemrana	1 No.	1500 MVA
4	3*80 MVAR (Single Phase) Line Reactors at both ends of 765 kV 2xS/C Suratgarh TPS-Neemrana lines	4 Sets	
5	3x110 MVAR (Single Phase), 765 kV Bus Reactors at Neemrana	1 Sets	
6	400 kV D/C (Twin Moose) Neemrana– Jhunjhunu line	120 kms, D/C	
7	2x315 MVA, 400/220 kV GSS at Jhunjhunu	1 No.	630 MVA
8	220 kV interconnections at 400/220 kV GSS at Jhunjhunu	60 kms, D/C	

## <u>Evacuation System of Banswara Super Critical Thermal Power</u> <u>Station (3*660 MW)</u>

#### <u>Background</u>

The State Govt. has announced the implementation of 2*660 MW at Banswara TPS in Banswara district in the XII Plan period. This Generating Project would be set up under "Case-2" Projects.

#### Planning Criteria

- The proposed Evacuation System for Banswara TPS would have to pass through reserved forest and Wildlife sanctuary, which may call for laying of high capacity transmission corridor.
- It is anticipated that there could be addition of 1 to 2 units of 660 MW at Banswara TPS, therefore the proposed Evacuation System have been designed for 3x660 MW.
- The tentative Cost Estimates for the evacuation on 765 kV voltage level is at **Annexure III**

SNo	Transmission System	Line Length/No	Transf. Capacity
1	765 kV 2xS/C Banswara TPS - Bhilwara(New) line	240 kms 2xS/C	
2	765 kV S/C Bhilwara(New) - Jaipur (South) line	250 kms	
3	1*1500 MVA, 765/400 kV GSS at Bhilwara(New)		1500 MVA
4	765 kV S/C Jaipur (South) - Neemrana line	160 kms	
5	3x80 MVAR (Single Phase) Line Reactors at both ends of 765 kV 2xS/C Banswara TPS - Bhilwara(New) ,Bhilwara(New) - Jaipur (South) & Jaipur(South) - Neemrana lines	8 SETS	
6	3x110 MVAR (Single Phase), 765 kV Bus Reactors at Bhilwara(New)	1 SETS	
7	400 kV inter-connections at 765/400 kV Bhilwara (New)		
(i)	400 kV D/C Bhilwara(New) - Ajmer line with one circuit LILO at existing 400 kV GSS Bhilwara	150 kms, D/C	
(ii)	10 kM LILO of 400 kV S/C Bhilwara - Dahra line at Bhilwara (new)	10 kms, D/C	
(iii)	400 kV D/C Bhilwara(New) - Udaipur line	160 kms, D/C	
(iv)	2*315 MVA, 400/220 kV ICTs at Bhilwara(New) & associated bay works		630 MVA
(v)	220 kV interconnections at Bhilwara(New)	60 kms, D/C	
(vi)	2*315 MVA, 400/220 kV GSS at Udaipur		630 MVA
(vii)	220 kV interconnections at Udaipur	60 kms, D/C	

#### **Proposed Evacuation System**

#### Load Flow Studies

It is anticipated that there would be increase in peak demand due to the impact of supply to Agriculture consumers from 3 blocks to 2 blocks. Also, higher growth rate has been anticipated in Industrial Sector due to development of Special Economic Zone in important cities of Rajasthan as well as fast urbanization. In view of these assumptions, it has been anticipated that Total System Peak Load of Rajasthan would be 16050MW in 2016-17 condition.

The load flow studies have been conducted for the following scenario:

System Condition	Exhibit No.	Table No.
The system condition corresponding to 2016-17 for the revised Total System Peak Load of 16050 MW:	1	1
<ul> <li>Commissioning of 2x660 MW Units at Chhabra TPS, 2x330 MW at Kawai TPS, 3x660 MW each at Suratgarh TPS and Banswara TPS</li> <li>Charging of 2x765 kV lines on 765 kV voltage level</li> </ul>		
The system condition corresponding to 2016-17 under Low Load of 12000 MW:	2	2

#### **Observations:**

- 1. The proposal of 400/765 kV pooling station at Chhabra would enable to optimize the number to EHV lines which should emanate for evacuation of power from Chhabra TPS and Kawai TPS.
- 2. 2 Nos of 765 kV lines from each of the Super Critical Generating Station would help to provide the system stability under N-1 contingency.
- 3. Sufficient shunt line/bus type reactors have been proposed in order to limit the over voltage problems under low load conditions.

#### **Conclusion:**

#### Proposed Evacuation System for Chhabra/Kawai TPS

- 1. Step up generation at Chhabra TPS (2x660 MW) and Kawai TPS (3x330 MW) at 400 kV voltage level
- 2. 400 kV interconnections between Chhabra TPS/ Kawai TPS and Chhabra Pooling Station (RVPN)
- 3. 1*1500 MVA, 400/765 kV GSS at Chhabra Pooling Station (RVPN)
- 4. 765 kV 2xS/C Chhabra TPS Jaipur(South) line (330 kms)

- 5. 1*1500 MVA, 765/400 kV GSS at Jaipur(South)
- 3*80 MVAR (Single Phase) Line Reactors at both ends of 765 kV 2xS/C Chhabra PP - Jaipur(South) lines
- 7. 3*110 MVAR (Single Phase), 765 kV Bus Reactors at Jaipur(South)

Since 2x S/C 765 kV lines are proposed towards Jaipur(South), thus it is very essential that the commissioning of 765/400 kV GSS at Jaipur (South) is firmed in the same time frame in which the Units at Chhabra/Kawai TPS would commission. Secondly, due to the availability of sufficient number of the existing/approved 400 kV lines of RVPN in the southern part of Jaipur, hence dispersal of 1980 MW at Jaipur could be facilitated without any constraint. <u>Therefore, it is proposed that 765/400 kV GSS at Jaipur (South)</u> be constructed by RVPN vis-à-vis PGCIL.

#### Proposed Evacuation System for Suratgarh TPS

- 1. The step-up generator voltage at Suratgarh TPS would be 765 kV.
- 2. 1x1500 MVA, 400/765 kV ICT has been proposed at Suratgarh TPS.
- 3. 765 kV 2xS/C Suratgarh TPS Neemrana line (350 kms)
- 3*80 MVAR (Single Phase) Line Reactors at both ends of 765 kV 2xS/C Suratgarh TPS - Neemrana lines
- 5. 3*110 MVAR (Single Phase), 765 kV Bus Reactors at Neemrana

Since PGCIL has already initiated the identification of suitable land at Neemrana for construction of 400/220 kV GSS and with the availability of sufficient number of proposed 400 kV regional lines at Neemrana, <u>It is proposed that 765/400 kV GSS at Neemrana be constructed by PGCIL and accordingly PGCIL may consider up-gradation of their 400/220 kV GSS at <u>Neemrana to 765 kV voltage level.</u></u>

#### **Proposed Evacuation System for Banswara TPS**

- 1. 765 kV 2xS/C Banswara TPS Bhilwara(New) line (240 kms)
- 2. 765 kV S/C Bhilwara(New) Jaipur (South) line (250 kms)
- 3. 1*1500 MVA, 765/400 kV GSS at Bhilwara(New)
- 4. 765 kV S/C Jaipur (South) Neemrana line (160 kms)
- 5. 3x80 MVAR (Single Phase) Line Reactors at both ends of 765 kV
  2xS/C Banswara TPS Bhilwara(New), Bhilwara(New) Jaipur (South)
  & Jaipur(South) Neemrana lines
- 6. 3x110 MVAR (Single Phase), 765 kV Bus Reactors at Bhilwara(New)

#### LGBR_13_14 (hydro low)

	NAME OF STATION	INSTALLED CAPACITY	Allocation to Rajasthan
			najuotitait
Α	SHARED PROJECTS		
1	SHARED PROJECTS OUTSIDE RAJASTHAN(Excl. GS HEP & Satpura Thermal)		200.58
2	SHARED PROJECTS INSIDE RAJASTHAN (30% IC)	81.30	40.65
	TOTAL(A) (30% IC)		241.23
	IMPORT ON NREB_HYDRO BUS		159.93
В	CENTRAL SECTOR PROJECTS		
1	PROJECTS OUTSIDE RAJASTHAN		
	NTPC, NLC		1539.12
	NPC		144.00
	NHPC & OTHERS (30% IC)		361.48
	TOTAL (B1)		2044.60
2	PROJECTS INSIDE RAJASTHAN		
	Anta Gas	419.33	83.07
	Barsingsar (NLC)	250.00	250.00
	RAPP-UNIT 2 to4	640.00	325.00
	RAPP-UNIT 5 & 6	440.00	88.00
	RAPP-UNIT 7 & 8	1400.00	280.00
	TOTAL (B2)	3149.33	1026.07
	TOTAL(B)		3070.67
С	ULTRA MEGA POWER PROJECTS		800.00
	IMPORT ON NREB_THERMAL BUS		721.34
	TOTAL (SHARED/ALLOCATION)		4111.90
	TOTAL GENERATION INSIDE RAJASTHAN	3230.63	
	NET POWER IMPORT ON TIE LINES		881.27
	PEAKING CAPABILITY AT 70%		616.89

#### LGBR_13_14 (thermal low)

	NAME OF STATION	INSTALLED CAPACITY	Allocation to Rajasthan
A	SHARED PROJECTS		
1	SHARED PROJECTS OUTSIDE RAJASTHAN(Excl. GS HEP & Satpura Thermal)		668.61
2	SHARED PROJECTS INSIDE RAJASTHAN	271.00	135.50
	TOTAL(A)		804.11
	IMPORT ON NREB_HYDRO BUS		533.11
в	CENTRAL SECTOR PROJECTS		
1	PROJECTS OUTSIDE RAJASTHAN		
	NTPC, NLC (70% IC)		-233.15
	NPC (70% IC)		-289.10
	NHPC & OTHERS		1204.92
	TOTAL (B1)		682.67
2	PROJECTS INSIDE RAJASTHAN		
	Anta Gas	419.33	83.07
	Barsingsar (NLC)	250.00	250.00
	RAPP-UNIT 2 to4	640.00	325.00
	RAPP-UNIT 5 & 6	440.00	88.00
	RAPP-UNIT 7 & 8	1400.00	280.00
	TOTAL (B2) (70% IC)	2204.53	718.25
	TOTAL(B)		1400.92
С	ULTRA MEGA POWER PROJECTS		800.00
	TOTAL (SHARED/ALLOCATION)		3005.03
	IMPORT ON NREB_THERMAL BUS		-3.61
	TOTAL GENERATION INSIDE RAJASTHAN	2475.53	
	NET POWER IMPORT ON TIE LINES		529.50
	PEAKING CAPABILITY AT 70%		370.65

TABLE-1 : Power flow for the system condition corresponding to 2016-17 for 16050 MW system load				
SNo.	Transmission System	POWER FLOW(MW)		
		Exhibit -2		
Α	765 kV Transmission Lines			
		10.40 \ \\\\		
	2* S/C Chhabra (PP) - Jaipur(South) line	1348 MW		
	2* S/C STPS - Neemrana line	1240 MW		
	2* S/C Banswara TPS - Bhilwara(New) lines	1970 MW		
	1* S/C Bhilwara (New)- Jaipur (South) line			
	1* S/C Jaipur(South) - Neemrana line	424 MW		
В	765/400 kV ICT			
	1*1500 MVA, 765/400 kV Bhilwara (New)	1247 MW		
	2*1500 MVA, 765/400 kV Jaipur (South)	1629 MW		
	2*1500 MVA, 765/400 kV Neemrana	1659 MW		
	2*1500 MVA, 400/765 kV Chhabra (PP)	1351 MW		
	*1500 MVA, 765/400 kV Suratgarh TPS	729 MW		
С	400 kV Transmission Lines			
I	At 765/400 kV Jaipur(South)			
	3*S/C Jaipur (South) - Heerapura line	1224 MW		
	1*S/C Jaipur (South) - Ajmer line	-19 MW		
	1*S/C Jaipur (South) - Dahra line	-338 MW		
	1*S/C Jaipur (South) - Hindaun line	133 MW		
11	At 400/220 kV Jaipur(North)			
	1*S/C Jaipur (North) - Heerapura line	-428 MW		
	1*S/C Jaipur (North) - Merta line	99 MW		
	2*S/C Jaipur (North) - Bassi(PG) line	336 MW		
	1*S/C Jaipur (North) - Sikar(PG) line	24 MW		
	1*S/C Jaipur (North) - Kotputli(PG) line	168 MW		
	At 765/400 kV Neemrana			
	D/C Neemrana(PG) - Alwar line	331 MW		
	D/C Alwar - Hindaun line	-101 MW		
	D/C Neemrana(PG) - Sikar(PG) line	115 MW		
	D/C Neemrana(PG) - Hissar(PG-NR) line	-17 MW		
	D/C Neemrana(PG) - Jhunjhunu line	632 MW		
	D/C Neemrana(PG) - Manesar(PG-NR) line	0 MW		
IV	At 765/400 kV Bhilwara (New)			
	D/C Bhilwara - Ajmer line	231 MW		
	S/C Bhilwara - Dahra line	-341 MW		
	D/C Bhilwara - Udaipur line	466 MW		
V	At STPS			
	2*S/C STPS - Ratangarh line	740 MW		
	S/C STPS - Bikaner line	443 MW		

ТАВ	TABLE-2 : Power flow for the system condition corresponding to2016-17 for 12000 MW system load			
SNo.	Transmission System	POWER FLOW(MW)		
		Exhibit -3		
Α	765 kV Transmission Lines			
	2* S/C Chhabra (PP) - Jaipur(South) line	1098 MW		
	2* S/C STPS - Neemrana line	852 MW		
	2* S/C Banswara TPS - Bhilwara(New) lines	1312 MW		
		005 100		
	1* S/C Bhilwara (New)- Jaipur (South) line	385 MW		
	1* S/C Jaipur(South) - Neemrana line	270 MW		
В	765/400 kV ICT			
	1*1500 MVA, 765/400 kV Bhilwara (New)	923 MW		
	2*1500 MVA, 765/400 kV Jaipur (South)	1210 MW		
	2*1500 MVA, 765/400 kV Neemrana	1120 MW		
	2*1500 MVA, 400/765 kV Chhabra (PP)	1101 MW		
	*1500 MVA, 765/400 kV Suratgarh TPS	463 MW		
С	400 kV Transmission Lines			
I	At 765/400 kV Jaipur(South)			
	3*S/C Jaipur (South) - Heerapura line	914 MW		
	1*S/C Jaipur (South) - Ajmer line	-6 MW		
	1*S/C Jaipur (South) - Dahra line	-268 MW		
	1*S/C Jaipur (South) - Hindaun line	73 MW		
II	At 400/220 kV Jaipur(North)			
	1*S/C Jaipur (North) - Heerapura line	-313 MW		
	1*S/C Jaipur (North) - Merta line	114 MW		
	2*S/C Jaipur (North) - Bassi(PG) line	-259 MW		
	1*S/C Jaipur (North) - Sikar(PG) line	-8 MW		
	1*S/C Jaipur (North) - Kotputli(PG) line	101 MW		
	At 765/400 kV Neemrana			
	D/C Neemrana(PG) - Alwar line	243 MW		
	D/C Alwar - Hindaun line	-73 MW		
	D/C Neemrana(PG) - Sikar(PG) line	108 MW		
	D/C Neemrana(PG) - Hissar(PG-NR) line	-61 MW		
	D/C Neemrana(PG) - Jhunjhunu line	446 MW		
	D/C Neemrana(PG) - Manesar(PG-NR) line	0 MW		
IV	At 765/400 kV Bhilwara (New)			
	D/C Bhilwara - Ajmer line	72 MW		
	S/C Bhilwara - Dahra line	-329 MW		
	D/C Bhilwara - Udaipur line	397 MW		
V	At STPS			
v	2*S/C STPS - Ratangarh line	554 MW		
	S/C STPS - Bikaner line	337 MW		

	TENTATIVE COST ESTIMATES			
		Unit Cost		
SNo.	Transmission System	(Rs. Crores)		
1	765 kV S/C line	1.45		
2	765/400 kV GSS without ICT	261.30		
3	1*1500 MVA. 765/400 kV ICT (Banks of 4 Single Phase Transformers)	51.00		
4	3*80 MVAR, 765 kV Line Reactors	28.00		
5	3*110 MVAR, 765 kV Bus Reactors	32.00		
6	2x315 MVA, 400/220 kV GSS	79.41		
7	1*315 MVA, 400/220 kV ICT	11.50		
8	400 kV D/C line (Twin Moose)	0.80		
9	400 kV D/C line (Quad Moose)	1.95		
10	50 MVAR, 400 kV Line Reactors	3.50		
11	63 MVAR, 400 kV Line Reactors	4.75		
12	80 MVAR, 400 kV Line Reactors	5.00		
13	125 MVAR, 400 kV Bus Reactors	5.50		
14	40 % Series Compensation on 400 kV D/C (Quad Moose) lines	30.00		
15	220 kV D/C line (Zebra)	0.37		

Annexure - III(a)

SNo	Transmission System	Line Length/ sets	Transformation Capacity	Cost (In Cr.)
1	765 kV 2xS/C Banswara TPS - Bhilwara(New) line	240 kms 2xS/C		696.0
2	765 kV S/C Bhilwara(New) - Jaipur (South) line	250 kms		362.5
3	1*1500 MVA, 765/400 kV GSS at Bhilwara(New)		1500 MVA	312.3
4	765 kV S/C Jaipur (South) - Neemrana line	160 kms		232.00
5	3x80 MVAR (Single Phase) Line Reactors at both ends of 765 kV 2xS/C Banswara TPS - Bhilwara(New) ,Bhilwara(New) - Jaipur (South) & Jaipur(South) - Neemrana lines	8 SETS		224.00
6	3x110 MVAR (Single Phase), 765 kV Bus Reactors at Bhilwara(New)	1 SETS		32.00
7	400 kV inter-connections at 765/400 kV Bhilwara (New)			
(i)	400 kV D/C Bhilwara(New) - Ajmer line with one circuit LILO at existing 400 kV GSS Bhilwara	150 kms, D/C		119.70
(ii)	10 kM LILO of 400 kV S/C Bhilwara - Dahra line at Bhilwara (new)	10 kms, D/C		7.98
(iii)	400 kV D/C Bhilwara(New) - Udaipur line	160 kms, D/C		127.68
(iv)	2*315 MVA, 400/220 kV ICTs at Bhilwara(New) & associated bay works		630 MVA	79.4
(v)	220 kV interconnections at Bhilwara(New)	60 kms, D/C		22.2
(vi)	2*315 MVA, 400/220 kV GSS at Udaipur		630 MVA	79.4
(vii)	220 kV interconnections at Udaipur	60 kms, D/C		22.2
	Total Cost of Power Evacuation System of Banswara	TPS (3x660 MW	)	2317.3

SNo	Transmission System	Line Length/	Transformation	Cost
		sets	Capacity	(In Cr.)
1	400 kV 2xD/C (Quad Moose) Banswara TPS - Bhilwara(New) line	240 kms 2xD/C		936.00
2	400 kV D/C (Quad Moose) Bhilwara(New) - Jaipur (South) line	250 kms, D/C		487.50
3	400 kV D/C (Quad Moose) Bhilwara(New) - Jodhpur (New) line	230 kms, D/C		448.50
3	3*315 MVA, 400/220 kV GSS at Bhilwara(New)		945 MVA	90.91
4	400 kV D/C (Quad Moose) Jaipur (South) - Neemrana line	160 kms, D/C		312.00
5	40 % Series Compensation on 400 kV 2xD/C (Quad Moose) Banswara TPS - Bhilwara(New) , D/C Bhilwara(New) - Jaipur (South), D/C Bhilwara(New) - Jodhpur (New) & D/C Jaipur (South) - Neemrana lines	5 Sets		150.00
6	2*80 MVAR Line Reactors at both ends of 400 kV 2xD/C (Quad Moose) Banswara TPS - Bhilwara(New) , D/C Bhilwara(New) - Jaipur (South), D/C Bhilwara(New) - Jodhpur (New) & D/C Jaipur (South) - Neemrana lines	20 Sets		100.00
7	125 MVAR , 400 kV Bus Reactors at Bhilwara(New) and Jodhpur(New)	2 SETS		11.00
8	400 kV D/C Bhilwara(New) - Ajmer line with one circuit LILO at existing 400 kV GSS Bhilwara	150 kms, D/C		119.70
9	10 kM LILO of 400 kV S/C Bhilwara - Dahra line at Bhilwara (new)	10 kms, D/C		7.98
10	400 kV D/C Bhilwara(New) - Udaipur line	160 kms, D/C		127.68
11	2*315 MVA, 400/220 kV ICTs at Bhilwara(New) & associated bay works		630 MVA	79.41
12	220 kV interconnections at Bhilwara(New)	60 kms, D/C		22.20
13	2*315 MVA, 400/220 kV ICTs at Jodhpur (New) & associated bay works		630 MVA	79.41
14	220 kV interconnections at Jodhpur (New)	60 kms, D/C		22.20
15	2*315 MVA, 400/220 kV GSS at Udaipur	1	630 MVA	79.41
16	220 kV interconnections at Udaipur	60 kms, D/C		22.20
	Total Cost of Power Evacuation System of Banswara	TPS (3x660 MW	)	3096.1

# . -

	TENTATIVE COST ESTIMATES	
		Unit Cost
SNo.	Transmission System	(Rs. Crores)
1	765 kV S/C line	1.4
2	765/400 kV GSS without ICT	261.30
3	1*1500 MVA. 765/400 kV ICT (Banks of 4 Single Phase Transformers)	51.00
4	3*80 MVAR, 765 kV Line Reactors	28.00
5	3*110 MVAR, 765 kV Bus Reactors	32.00
6	2x315 MVA, 400/220 kV GSS	79.4
7	1*315 MVA, 400/220 kV ICT	11.50
8	400 kV Switching Station	57.00
9	400 kV D/C line (Twin Moose)	0.80
10	400 kV D/C line (Quad Moose)	1.95
11	50 MVAR, 400 kV Line Reactors	3.50
12	63 MVAR, 400 kV Line Reactors	4.75
13	80 MVAR, 400 kV Line Reactors	5.00
14	125 MVAR, 400 kV Bus Reactors	5.50
15	40 % Series Compensation on 400 kV D/C (Quad Moose) lines	30.00
16	220 kV D/C line (Zebra)	0.37

<u>CN</u>	765 kV PROPOSAL : Total Estimated Cost for Evacuation System of Chhabra T			Annexure -I(A 0 MW) Estimated Cost
SNo.	Transmission System	Line Length/Set	Transf. Capacity	(Rs. Cr)
Α	Chhabra TPS (2*660 MW)			
1	400 kV 2xD/C (Quad Moose) Chhabra TPS - Chhabra Pooling Station line	10 kms, 2xD/C		39.0
2	LILO of one ckt of 400 kV D/C+S/C Chhabra TPS - Dahra line at Chhabra Pooling Station	10 kms, D/C		7.9
3	LILO of one ckt of 400 kV D/C Kalisindh TPS - Dahra line at Chhabra Pooling Station	50 kms, D/C		39.9
4	1*1500 MVA,765/400 kV GSS at Chhabra Pooling Station (RVPN)	1 No.	1500 MVA	312.3
5	765 kV 2xS/C Chhabra TPS - Jaipur(South) line	330 kms 2xS/C		957.0
6	1*1500 MVA,765/400 kV GSS at Jaipur(South)	1 No.	1500 MVA	312.3
7	3*80 MVAR (Single Phase) Line Reactors at both ends of 765 kV 2xS/C Chhabra PP - Jaipur(South) lines	4 Sets		112.0
8	3*110 MVAR (Single Phase), 765 kV Bus Reactors at Jaipur(South)	1 Sets		32.0
9	10 kM LILO of 400 kV S/C Hindaun-Heerapura line at Jaipur(South)	10 kms, D/C		7.9
10	10 kM LILO of one circuit of 400 kV D/C Chhabra TPS-Heerapura line at Jaipur(South)	10 kms, D/C		7.9
11	10 kM LILO of one circuit of 400 kV D/C Ajmer-Heerapura line at Jaipur(South)	10 kms, D/C		7.9
12	220 kV D/C interconnections at Jaipur (South)	50 kms, D/C		18.5
	TOTAL(A)			1854.9
В	Kewai TPS (2*330 MW)			
1	400 kV D/C (Quad Moose) Kewai TPS - Chhabra Pooling Station line	20 kms, D/C		39.0
	TOTAL(B)			39.0
	Total Estimated Cost for Evacuation System of Chhabra TPS (2*660 MW) & Kewai TPS (2	2*330 MW)	<u> </u>	1893.9

400	kV (QUAD MOOSE) PROPOSAL: Total Estimated Cost for Evacuation System TPS (2*330 MW)	n of Chhabra T	PS (2*660	Annexure -I(E MW) & Kewai
SNo	Transmission System	Line Length/set	Transf. Capacity	Estimated Cost (Rs. Cr)
Α	Chhabra TPS (2*660 MW)			
1	400 kV Pooling Station at Chhabra			57.0
2	400 kV 2xD/C (Quad Moose) Chhabra TPS - Chhabra Pooling Station line	10 kms, 2xD/C		39.0
3	LILO of one ckt of 400 kV D/C+S/C Chhabra TPS - Dahra line at Chhabra Pooling Station	10 kms, D/C		7.9
4	LILO of one ckt of 400 kV D/C Kalisindh TPS - Dahra line at Chhabra Pooling Station	50 kms, D/C		39.9
5	400 kV D/C (Quad Moose) Chhabra TPS - Jaipur(South) line	330 kms, D/C		643.5
6	400 kV D/C (Quad Moose) Chhabra TPS - Alwar line	360 kms, D/C		702.0
7	400 kV D/C (Quad Moose) Neemrana - Alwar line	80 kms, D/C		63.8
8	40 % Series Compensation on 400 kV D/C (Quad Moose) Chhabra TPS - Jaipur(South) , Chhabra TPS - Alwar & Neemrana - Alwar lines	3 Sets		90.0
9	2*80 MVAR Line Reactors at both ends of 400 kV D/C Chhabra TPS - Jaipur(South) ,Chhabra TPS-Alwar & Neemrana - Alwar lines	12 Sets		60.0
10	125 MVAR, 400 kV Bus Reactors at 400/220 kV GSS Jaipur(South-PG), Alwar & Neemrana	3 Sets		16.5
11	10 kM LILO of 400 kV S/C Hindaun-Heerapura line at Jaipur(South)	10 kms, D/C		7.9
12	10 kM LILO of one circuit of 400 kV D/C Chhabra TPS-Heerapura line at Jaipur(South)	10 kms, D/C		7.9
13	10 kM LILO of one circuit of 400 kV D/C Ajmer-Heerapura line at Jaipur(South)	10 kms, D/C		7.9
14	220 kV D/C interconnections at Jaipur (South), Alwar and Neemrana	100 kms, D/C		37.
	TOTAL(A)			1780.
В	Kewai TPS (2*330 MW)			
1	400 kV D/C Kewai TPS – Chhabra Pooling Station (Quad Moose) line	20 kms, D/C		78.0
	TOTAL(B)			78.0
	Total Estimated Cost for Evacuation System of Chhabra TPS (2*660 MW) & Kewai T	PS (2*330 MW)	<u> </u>	1858.6

	TENTATIVE COST ESTIMATES						
		Unit Cost					
SNo.	Transmission System	(Rs. Crores)					
1	765 kV S/C line	1.45					
2	765/400 kV GSS without ICT	261.30					
3	1*1500 MVA. 765/400 kV ICT (Banks of 4 Single Phase Transformers)	51.00					
4	3*80 MVAR, 765 kV Line Reactors	28.00					
5	3*110 MVAR, 765 kV Bus Reactors	32.00					
6	2x315 MVA, 400/220 kV GSS	79.41					
7	1*315 MVA, 400/220 kV ICT	11.50					
8	400 kV D/C line (Twin Moose)	0.80					
9	400 kV D/C line (Quad Moose)	1.95					
10	50 MVAR, 400 kV Line Reactors	3.50					
11	63 MVAR, 400 kV Line Reactors	4.75					
12	80 MVAR, 400 kV Line Reactors	5.00					
13	125 MVAR, 400 kV Bus Reactors	5.50					
14	40 % Series Compensation on 400 kV D/C (Quad Moose) lines	30.00					
15	220 kV D/C line (Zebra)	0.37					

SNo	Transmission System	Line Length/Set	Transf. Capacity	Estimated Cost
				(Rs. Cr)
1	400 kV D/C (Quad Moose) Suratgarh TPS – Jhunjhunu line	230 kms, D/C		448.5
2	400 kV D/C (Quad Moose) Suratgarh TPS – Nagaur line	270 kms, D/C		526.5
4	400 kV D/C (Quad Moose) Jhunjhunu - Sikar(PG) line	75 kms, D/C		146.2
5	400 kV D/C (Quad Moose) Nagaur - Jodhpur(New) line	150 kms, D/C		292.5
6	2x315 MVA, 400/220 kV GSS at Jhunjhunu	1 No.	630 MVA	79.4
7	220 kV interconnections at 400/220 kV GSS at Jhunjhunu	60 kms, D/C		22.2
8	2x315 MVA, 400/220 kV GSS at Nagaur	1 No.	630 MVA	79.4
9	220 kV interconnections at 400/220 kV GSS at Nagaur	60 kms, D/C		22.2
10	2*80 MVAR Line Reactors at both ends of 400 kV D/C Suratgarh TPS - Jhunjhunu- Sikar(PG) line	8 Sets		40.0
11	2*80 MVAR Line Reactors at both ends of 400 kV D/C Suratgarh TPS - Nagaur & Nagaur – Jodhpur(New) lines	8 Sets		40.0
12	125 MVAR, 400 kV Bus Reactors at Jhunjhunu & Nagaur	2 Sets		11.0
13	40 % Series Compensation on 400 kV D/C Suratgarh TPS – Jhunjhunu , Suratgarh TPS – Nagaur, Jhunjhunu - Sikar & Nagaur - Jodhpur lines	4 Sets		120.0
	Total Estimated Cost for Evacuation System of Suratgarh TPS (3*660 MW)	I		1827.9

SNo.	Transmission System	Line Length/No	Transf. Capacity	Estimated Cost
1	1*1500 MVA,765/400 kV ICT at Suratgarh TPS	1 No.	1500 MVA	(Rs. Cr)
2	765 kV 2xS/C Suratgarh TPS - Neemrana line	350 kms 2xS/C		1015.
3	1*1500 MVA,765/400 kV GSS at Neemrana	1 No.	1500 MVA	312.
4	3*80 MVAR (Single Phase) Line Reactors at both ends of 765 kV 2xS/C Suratgarh TPS- Neemrana lines	4 Sets		112.0
5	3x110 MVAR (Single Phase), 765 kV Bus Reactors at Neemrana	1 Sets		32.
6	400 kV D/C (Twin Moose) Neemrana– Jhunjhunu line	120 kms, D/C		95.
7	2x315 MVA, 400/220 kV GSS at Jhunjhunu	1 No.	630 MVA	
8	220 kV interconnections at 400/220 kV GSS at Jhunjhunu	60 kms, D/C		22.
	Total Estimated Cost for Evacuation System of Suratgarh TPS (3*660 MW)			1668.

SNo.	Transmission System	POWER FLOW(MW)
		Exhibit -5
Α	400 kV Transmission Lines (Quad Moose)	
	D/C Chhabra (PP) - Jaipur(South) line	770 M
	D/C Chhabra (PP) - Alwar line	750 M
	D/C STPS -Jhunjhunu line	774 M
	D/C STPS -Nagaur line	496 M
	2xD/C Banswara TPS - Bhilwara(New) lines	1970 M
	D/C Bhilwara (New)- Jaipur (South) line	347 M
	D/C Bhilwara (New)- Jodhpur line	315 M
	D/C Jaipur(South) - Neemrana line	197 M\
	D/C Nagaur-Jodhpur(New) line	30 MV 48 MV
	D/C Jhunjhunu-Sikar line	48 101
С	400 kV Transmission Lines	
I	At 400 kV Jaipur(South)	
	3*S/C Jaipur (South) - Heerapura line	756 M\
	1*S/C Jaipur (South) - Ajmer line	-94 M\
	1*S/C Jaipur (South) - Dahra line	-352 M\
	1*S/C Jaipur (South) - Hindaun line	49 M\
	At 400/220 kV Jaipur(North)	
	1*S/C Jaipur (North) - Heerapura line	-266 M\
	1*S/C Jaipur (North) - Merta line	-59 M\
	2*S/C Jaipur (North) - Bassi(PG) line	306 MV
	1*S/C Jaipur (North) - Sikar(PG) line 1*S/C Jaipur (North) - Kotputli(PG) line	-17 M\ 170 M\
	T"S/C Jaipur (North) - Kotputii(PG) line	
	At 400 kV Neemrana	005 M
	D/C Neemrana(PG) - Alwar line D/C Alwar - Hindaun line	225 M 46 M
	D/C Neemrana(PG) - Sikar(PG) line	-9 M\
	D/C Neemrana(PG) - Hissar(PG-NR) line	-16 M
	D/C Neemrana(PG) - Manesar(PG-NR) line	0 M
IV	At 400 kV Bhilwara (New)	
	D/C Bhilwara - Ajmer line	292 M
	S/C Bhilwara - Dahra line	-273 M
	D/C Bhilwara - Udaipur line	432 M
V	At STPS 2*S/C STPS - Ratangarh line	766 M

SNo.	Transmission System	POWER FLOW(MW)
Α	765 kV Transmission Lines	Exhibit -1
~		
	2* S/C Chhabra (PP) - Jaipur(South) line	1294 MV
	2* S/C STPS - Neemrana line	1970 MV
	2* S/C Banswara TPS - Bhilwara(New) lines	1970 MV
	1* S/C Bhilwara (New)- Jaipur (South) line	655 MV
	1* S/C Jaipur(South) - Neemrana line	113 MV
В	765/400 kV ICT	
	1*1500 MVA, 765/400 kV Bhilwara (New)	1305 MV
	2*1500 MVA, 765/400 kV Jaipur (South)	1822 MV
	2*1500 MVA, 765/400 kV Neemrana	2070 MV
	2*1500 MVA, 400/765 kV Chhabra (PP)	1297 MV
	*1500 MVA, 765/400 kV Suratgarh TPS	OU
С	400 kV Transmission Lines	
I	At 765/400 kV Jaipur(South)	
	3*S/C Jaipur (South) - Heerapura line	1379 MV
	1*S/C Jaipur (South) - Ajmer line	12 MV
	1*S/C Jaipur (South) - Dahra line	-339 MV
	1*S/C Jaipur (South) - Hindaun line	122 MV
II	At 400/220 kV Jaipur(North)	
	1*S/C Jaipur (North) - Heerapura line	-487 MV
	1*S/C Jaipur (North) - Merta line	140 MV
	2*S/C Jaipur (North) - Bassi(PG) line	363 MV
	1*S/C Jaipur (North) - Sikar(PG) line	96 MV
	1*S/C Jaipur (North) - Kotputli(PG) line	146 MV
	At 765/400 kV Neemrana	
	D/C Neemrana(PG) - Alwar line	363 MV
	D/C Alwar - Hindaun line	-82 MV
	D/C Neemrana(PG) - Sikar(PG) line	321 MV
	D/C Neemrana(PG) - Hissar(PG-NR) line	0 MV
	D/C Neemrana(PG) - Jhunjhunu line	674 MV 0 MV
	D/C Neemrana(PG) - Manesar(PG-NR) line	0 1010
IV	At 765/400 kV Bhilwara (New)	
	D/C Bhilwara - Ajmer line S/C Bhilwara - Dahra line	261 MV -353 MV
	D/C Bhilwara - Udaipur line	-353 MV 474 MV
V	At STPS 2*S/C STPS - Ratangarh line	282 MV
	S/C STPS - Bikaner line	294 MV

TABULATION_OF_POWER_FLOW2.xls

LOADING_OF_TRANSFORMERS_FOR_PEAK_LOAD.txt LOAD FLOW ANALYSIS CONVERGED, ITERATIONS P : 9 Q : 8 CASE NO : 1 CONTINGENCY : 0 SCHEDULE NO : 0 CONTINGENCY NAME : Basecase RATING CONSIDERED : NOMINAL									
From	Name	то	Name	From(MW)	From(MVAR)	%Loading	ckts	tap	
CASE CONT	NO : 1 INGENCY NA	CO AME :	ONTINGENC Basecase	Y : 0 SC RATI	CHEDULE NO ING CONSIDE From(MVAR)  36.413 -50.745 178.140 12.417 -23.744 -37.563 -18.781 -23.385 -21.835 -13.112 -72.795 -17.603 -33.012 29.390 8.359 45.979 130.469 7.140 2.487 123.083 354.656 84.357 33.593 25.358 -10.554 87.955 13.574 13.465 21.527 -4.927 75.551 0.691 50.207 36.181 44.921 -12.806 4.499	: 0 RED : NOMI		tap 0.9750 0.9750 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	
272 250 101 100 102	ALWZ	1272 1250 1101 1100 1102	KNGUSI KHETRI1 KOTP1 ALW1 BHD1	319.291 353.086 176.471 230.579 241.908	4.499 79.876 38.589 57.021 67.642	65.277 77.084 73.479 96.725 84.329	5 5 1 3	T.0000	
110 130 262 200		1130 1262 1200	BHT21 HIND1 KUCH1 AJM1	276.660 323.108 160.356 319.897	-9.536 62.846 47.999 -4.227	73.085 83.294 87.469 106.373	4 2 2	1.0500 1.0000 0.9500 1.0000	
261 260 271 341 320 340 302 380 251 403 331 240	RTNGD22 BIKNR2 JJN2 HISSR2 BHIN2	1460 1271 1341 1320 1340 1302 1380 1251 1403	NAGR1 MRT_1 SIKAR1 UDYOG1 HANUMNG SURATGH1 BIKNR1 JJN21 HISSR1 BHINML1 KANKRLI	$\begin{array}{c} 210.006\\ 246.950\\ 341.942\\ 128.290\\ 103.912\\ 269.257\\ 423.583\\ 385.867\\ 164.586\\ 0.000\\ 201.575\\ 180.331 \end{array}$	$\begin{array}{r} 38.930\\ 13.804\\ 51.729\\ 31.680\\ 8.840\\ 79.150\\ -2.260\\ 4.589\\ 35.665\\ 0.000\\ 65.604\\ -1.557\\ 7.565\\ -2.220\\ 1.55\\ 0.000\\ -2.220\\ -2.55\\ 0.000\\ -2.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\ 0.000\\ -1.55\\$	73.259 83.968 69.192 92.679 53.982 95.474 140.834 78.125 89.246 0.000 109.990 59.411	2 3 5 2 1	$\begin{array}{c} 1.0500\\ 0.9500\\ 1.0000\\ 1.0500\\ 1.0000\\ 1.0000\\ 1.0500\\ 1.0000\\ 0.9750\\ 1.0000\\ 0.9750\\ 1.0000 \end{array}$	

Page 1

		C OF TRANS	FORMERS_FOR		ר + v+
220 СНТ2 12		332.110	130.668	96.245	4 1.0000
140 JHLW2 11		346.385	43.206	86.409	4 1.0000
141 MODK2 11		57.009	26.943	41.767	1 1.0000
161 DHR2 11		116.172	28.907	59.691	2 1.0000
	45 TIE_220	321.694	108.691	32.967	4 1.0000
	47 NTIE_220	141.961	16.989	27.762	2 1.0000
159 SWM_2 21		128.570	36.351	136.186	1 1.0000
47 BHWDI4	48 BHWD42	342.606	192.784	61.710	2 0.9750
317 BHOPL2 23		120.956	40.062	134.552	1 1.0000
361 PALI_2 23		120.900	-3.297	63.034	2 1.0000
134 DHOLPR2 11	.34 DHLPR1	180.867	54.765	126.866	1 1.0000
11 MERTA_4 2		438.357	111.493	71.477	2 1.0000
	13 JDHPR_42	464.323	124.630	51.162	3 1.0000
	809 SUJNGH21	132.088	-10.836	67.442	21.0000
231 BANSWR2 12		73.453	15.501	82.337	1 1.0000
370 JALORE_2 13 65 KTPS2	63 KTPS#4	91.047 -348.286	21.439 -41.709	96.976 69.543	$ \begin{array}{c} 1 & 1.0000 \\ 2 & 1.0000 \end{array} $
263 MKRANA2 12		50.143	-19.541	56.933	11.0000
318 PHALOD2 13		274.391	107.308	75.260	3 1.0000
352 AMSGR2 23		-7.390	1.861	3.695	2 1.0000
	S7 BARMER_1	106.515	4.458	105.623	1 1.0000
343 GLTPS_2	39 GLTPS_G	-240.801	-12.868	79.221	2 1.0000
232 DHAURIMA 23		170.040	33.339	89.081	2 1.0500
270 KHNVS2 12		130.936	32.422	71.450	2 1.0000
149 DUNI2 23	49 DUNI_1	89.892	14.564	91.904	1 1.0000
94 MADA2	34 MADA_33	-29.976	2.615	12.978	3 1.0000
96 TEMDRIA		-29.976	6.266	13.183	3 1.0000
2352 AMSGR1	36 AMSGR_33	-19.976	1.569	19.447	4 1.0000
	42 HPRRING1	111.058	33.391	117.708	1 1.0000
440 DGTPS_2		-313.615	-17.357	70.118	3 1.0000
375 BLTPS_2		-224.732	-84.863	81.521	21.0000
5 RAPP_CD4		-398.105	3.090	77.965	2 1.0000 3 0.9625
7 KNKPG_4 1 127 NEEMR_2 21	.70 KNKPG_2 .27 NEMRN132	328.555 222.324	124.535 53.822	37.565 114.665	2 1.0000
128 BHADRA_2 22		76.981	-9.062	80.695	1 1.0000
129 SRIDUNG2 13		98.039	29.137	53.243	2 1.0000
131 MANDA2 21		91.648	-4.181	46.342	2 1.0000
337 SANCHR2 23		115.603	24.102	61.690	2 1.0000
		267.770	24.184	83.248	1 1.0000
8 CHABRA_4	85 CHABRA_G	-996.879	7.705	51.446	6 1.0000
9 BHL_4 1	42 BHL_42	441.726	63.892	71.146	2 1.0000
143 BARA_2 21		87.158	6.961	87.585	1 1.0000
	32 HIND_42	432.299	56.887	69.015	2 1.0000
14 BIKANE_4 3				58.950	
	62 KOTA_42	152.722	44.871	24.839	21.0000
344 RJWST_2	49 RJWESTG1		-24.435 17.918	79.864	21.0000
432 JAGATPU2 14 15 BHINM_4 4	32 JAGATPU1 50 BHIN_2	117.269 197.251	70.778	60.593 69.864	2 1.0000 1 0.9625
410 VKIA_2 11		116.023	37.897	124.667	1 1.0000
	45 RJWESTG2	-723 048	113.467	80.893	6 1.0000
16 RAJWEST4 3	44 RJWST_2	81.158	-18.648	26.296	1 1.0000
	73 SIKAR_42	587.254	170.971	96.169	2 0.9750
217 RENWAL_2 11	17 RENWL1	135.492	13.285	70.003	2 1.0000
23 JAISWF_4 3	353 JAISWF_2	-111.471	-50.275	19.007	2 1.0000
31 BARMER_4 3	BARMER2	99.610	-5.249	31.392	1 1.0000
105 KUSHKH_2 21		210.201	81.084	75.735	3 1.0000
199 KISHAN_2 22		96.623	57.305	124.303	1 1.0000
374 VSLP_2		-120.383	-15.358	80.343	1 1.0000
147 MANSAR_2 11		218.277	44.109	70.693	$ \begin{array}{c} 2 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
181 KAWAI_2 21 158 NPH_2 11		103.345 204.468	15.667 40.163	104.374	$ \begin{array}{c} 1 & 1.0000 \\ 2 & 1.0000 \end{array} $
	.58 NPH1 .23 BAGRU_21	204.408 51.418	8.547	66.292 54.447	11.0000
315 BORNDA_2 12		67.149	38.669	80.005	1 1.0000 1 1.0000
JIJ BORNDA_2 IZ		07.147	Page 2	00.005	1 1.0000

Page 2

_____

LOADING_OF_TRANSFORMERS_FOR_LOW_LOAD.txt LOAD FLOW ANALYSIS CONVERGED, ITERATIONS P : 7 Q : 6 CASE NO : 1 CONTINGENCY : 0 SCHEDULE NO : 0 CONTINGENCY NAME : Basecase RATING CONSIDERED : NOMINAL									
From	Name	то	Name	From(MW)	From(MVAR)	%Loading	ckts	tap	
CONT: From  50 51 51 30 65 65 417 415 416 1510 1520 1500 1500 1501 210 43 1500 1501 210 312 310 360 332 330 350 221 155 120 272 250 101	INGENCY NA Name STPS2 STPS4 STPS4 RATHNGH4 KTPS2 KTPS2 KTPS2 ANTA2 ANTA2 ANTA2 ANTA2 RAPPA MAHI_II MAHI_II MAHI_II MAHI_II MAHI_II BR2 RMG132 TINW2 SKT2 RPS1 JS1 BHL2 HERPR4 BASSI4 HIRAPR2 BWR_2 BUL2 JDP2 BALI2 SRH2 BAL2 PIND2 SRH2 BAL2 PIND2 SRH2 BAL2 CHMU2 KUKAS2 SNG2 CHMU2 KUKAS2 SNG2 CHMU2 KUKAS2 SNG2 CHMU2 KUKAS2 SNG2 CHMU2 KUKAS2 SNG2 CHMU2 KUKAS2	ME : To 52 53 50 301 60 61 62 70 71 80 93 1230 95 1312 1160 97 98 1210 150 1311 1310 1360 1321 1350 1251 1155 1120 1272 1250 1101	Basecase	RAT From(MW)  -448.055 -672.375 243.920 213.220 -197.014 0.000 -187.987 0.000 -139.421 -0.000 -397.674 -23.617 -0.000 241.171 -59.846 184.886 397.116 -0.000 241.171 -59.846 184.886 397.116 -0.000 387.330 702.556 326.154 173.630 81.754 73.369 266.768 74.542 85.214 143.672 84.865 213.227 89.843 132.189 141.242 150.739 154.029 235.246 272.308 130.113	ING CONSIDER From(MVAR)  79.632 15.955 168.154 31.500 -32.215 0.000 -26.234 0.000 -26.234 0.000 -71.522 -8.398 0.000 57.532 8.270 53.886 152.102 -0.000 0.000 121.333 339.273 83.504 48.167 40.013 14.433 84.967 23.549 24.190 40.590 13.797 83.167 17.867 58.677 43.331 50.490 23.494 28.894 82.742 43.206	RED : NOMI %Loading 71.417 68.128 46.170 22.435 79.495 0.000 75.584 0.000 81.393 0.000 81.393 0.000 80.980 96.267 0.000 74.536 58.471 66.133 105.914 0.000 82.412 72.681 52.652 60.403 47.101 39.346 94.122 79.393 45.746 51.127 57.691 62.749 64.122 73.991 39.133 48.247 59.143 55.187	ckts 2323221311211123422512322312314122224551	tap 0.9750 0.9750 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000	
100 102 110 130 262	ALW2 BHD2 BHT2 HIND2 KUCH2	1100 1102 2110 1130 1262	ALWI BHD1 BHT21 HIND1 KUCH1	169.877 181.374 213.775 234.795 118.160	67.039 67.973 12.398 73.278 62.351	73.605 64.008 53.487 61.604 70.104	1 3 4 4 2	1.0000 1.0000 1.0500 1.0000 0.9500	
200 261 260 271 341 320 340 302 380 251	RTNGD22 BIKNR2	1261 1460 1271 1341 1320 1340 1302	AJM1 NAGR1 MRT_1 SIKAR1 UDYOG1 HANUMNG SURATGH1 RTNGH1 BIKNR1 JJN21	247.819 154.763 185.657 261.965 95.030 75.842 199.559 315.413 286.369 124.839	40.654 52.475 32.929 101.668 32.845 8.266 69.907 32.740 30.213 41.910	84.150 55.461 63.513 56.069 69.234 38.794 70.962 104.835 58.045 68.192	2 3 3 5	$\begin{array}{c} 1.0000\\ 1.0000\\ 1.0500\\ 0.9500\\ 1.0000\\ 1.0500\\ 1.0000\\ 1.0000\\ 1.0500\\ 1.0000\\ 1.0000\\ 1.0000\end{array}$	
403 331 240	HISSR2 BHIN2 KNK2	1403 1331	HISSR1 BHINML1 KANKRLI	0.000 150.362 143.909	0.000 66.389 43.955	0.000 84.069 49.313	1 2	0.9750 1.0000 1.0000	

Page 1

	ING_OF_TRAN			) +v+
220 CHT2 1220 CHTG		112.823	75.435	4 1.0000
140 JHLW2 1140 JHALWR		38.698	77.239	4 1.0000
		37.239	30.338	11.0000
161 DHR2 1161 DHRA		33.910	52.912	2 1.0000
44 NREB_HYD 445 TIE_22		71.101	27.107	4 1.0000
46 NREB_TH 447 NTIE_22		11.729	19.974	2 1.0000
159 SWM_2 2159 SAWAIM		38.351	105.148	1 1.0000
47 BHWDI4 48 BHWD4	2 264.713	163.009	48.372	2 0.9750
317 BHOPL2 2319 BHOPL2		47.619	107.381	1 1.0000
361 PALI_2 2361 PALI_2		10.789	47.494	2 1.0000
134 DHOLPR2 1134 DHLPR		46.899	102.136	1 1.0000
11 MERTA_4 260 MRT		131.364	57.068	2 1.0000
12 JODHPR_4 313 JDHPR_4		89.998	35.811	3 1.0000
309 SUJNGH2 1309 SUJNGH2	1 96.105	4.611	49.144	2 1.0000
231 BANSWR2 1231 BNSR	1 81.989	56.193	122.873	1 0.9125
370 JALORE_2 1375 JALOR_2	1 68.528	24.292	74.630	1 1.0000
65 KTPS2 63 KTPS#	4 -348.251	-56.620	70.249	2 1.0000
263 MKRANA2 1263 MKRAN		-2.325	39.512	1 1.0000
318 PHALOD2 1317 PHALOD	DI 205.167	82.228	53.493	3 1.0000
352 AMSGR2 2352 AMSGR		5.627	13.600	2 1.0000
351 BARMER2 1357 BARMER_	1 75.536	12.520	75.450	1 1.0000
	<u>G</u> -120.406	-2.715	78.886	11.0000
232 DHAURIMA 2332 DHAURIM	IN 126.925	29.841	66.063	2 1.0500
270 KHNVS2 1270 KHNVS		31.525	52.908	2 1.0000
149 DUNI2 2349 DUNI_		18.239	71.779	1 1 0000
94 MADA2 34 MADA_3		2.609	12.978	$ \begin{array}{c} 1 & 1.0000 \\ 3 & 1.0000 \end{array} $
		4.695	13.072	3 1.0000
		0.524	19.418	4 1.0000
150 HIRAPR2 1142 HPRRING		33.636	90.527	1 1.0000
440 DGTPS_2 37 DGTPS_	<u>G</u> -313.648	-17.910	69.423	3 1.0000
	<u>G</u> -112.385	-41.529	81.011	$ \begin{array}{c} 1 & 1.0000 \\ 2 & 1.0000 \end{array} $
	<u>G</u> -398.116	20.147	77.745	2 1.0000
7 KNKPG_4 170 KNKPG_		169.584	31.637	3 0.9625
127 NEEMR_2 2127 NEMRN13	2 167.289	53.441	86.822	2 1.0000
128 BHADRA_2 2261 BADRA_2	1 57.836	2.626	59.295	1 1.0000
129 SRIDUNG2 1394 SRIDUN2		32.920	41.855	2 1.0000
131 MANDA2 2123 MANDWR		12.666	36.622	$ \begin{array}{c} 2 & 1.0000 \\ 2 & 1.0000 \end{array} $
337 SANCHR2 2333 SANCH		25.784	47.257	2 1.0000
8 CHABRA_4 180 CHABRA_		39.608	74.743	1 1.0000
8 CHABRA_4 85 CHABRA_	<u> </u>	19.339	51.417	6 1.0000
9 BHL_4 142 BHL_4		49.110	62.391	2 1.0000
143 BARA_2 2174 BARA_2		15.675	71.386	1 1.0000
13 HIND_4 132 HIND_4	2 302.282	67.664	48.453	2 1.0000
14 BIKANE_4 381 BIKANE_			45.015	
6 KOTA_PG4 162 KOTA_4		96.512	31.729	2 1.0000
	1 -240.830	-10.623	79.089	2 1.0000
432 JAGATPU2 1432 JAGATPU	1 91.010	23.037	47.548	2 1.0000
15 BHINM_4 450 BHIN_	2 140.033	71.925	51.758	1 0.9625
410 VKIA_2 1105 VKIA_2	1 86.448	37.336	95.228	1 1.0000
16 RAJWEST4 45 RJWESTO		123.569	81.852	4 1.0000
16 RAJWEST4 344 RJWST_		-10.957	14.035	1 1.0000
21 SIKAR_4 273 SIKAR_4		196.956	76.493	2 0.9750
217 RENWAL_2 1117 RENWL		30.183	53.668	2 1.0000
	2 -119.128	-16.209	18.592	2 1.0000
31 BARMER_4 351 BARMER		1.591	22.065	1 1.0000
105 KUSHKH_2 2105 KUSHKH		65.113	56.597	3 1.0000
199 KISHAN_2 2200 KISHN_2		40.495	82.625	1 1.0000
	<u>G</u> -120.390	-12.216	79.896	1 1.0000
147 MANSAR_2 1156 MANSVR		51.936	53.724	2 1.0000
181 KAWAI_2 2165 KEWA		19.281	87.745	1 1.0000
158 NPH_2 1158 NPH		47.847	50.642	2 1.0000
156 BAGRU_2 1123 BAGRU_2		13.079	42.207	11.0000
315 BORNDA_2 1299 BORNDA_		27.506	57.857	1 1.0000 1 1.0000
JIJ BORNDA_Z IZJJ BORNDA_		Page 2	57.057	T T.0000

Page 2

-----

#### **Annexure-IV**

# Meeting convened by Member (PS), CEA on 18.05.2009 to discuss the issues relating to the evacuation system from Budhil HEP (70 MW) in Himachal Pradesh

## List of participants

Name

Designation

#### CEA

1. Sh. V. Ramakrishna	Member (PS)
2. Sh. Ravinder	Chief Engineer (SP&PA)
3. Sh. Naresh Bhandari	Director (SP&PA)

#### HPPTCL

ger
l

#### Powergrid

Sh. Mukesh Khanna	Chief Design Engineer (EnggSEF	)
-------------------	--------------------------------	---

#### JSW Energy

1. Satish Jindal	Sr. Vice President
2. Manoj Rastogi	Deputy General Manager

#### Lanco Green Power Private Limited

1. RRS Manian	Vice President (E&M)
2. TR Sharma	General Manager (E)

Summary Record of discussion held in a meeting convened by Member (PS), CEA on 18.05.2009 to discuss the issues relating to the evacuation system from Budhil HEP (70 MW) in Himachal Pradesh

List of the participants is enclosed as Annexure.

1. Member (PS), CEA welcomed the participants. Giving background of the issue, he informed that CEA has prepared a Master plan of transmission for evacuation of power from power projects in Himachal Pradesh (HP). This plan was prepared in consultation with HPSEB as per the discussions held in the meeting convened by Chief Secretary, HP Govt. under the direction of Hon'ble High Court of HP and the same has been uploaded on the website of CEA. The plan developed way back in July 2007 has been discussed with all the beneficiaries of Northern Region in the Standing Committee and agreed to. As per the plan, power from projects proposed to be built on Ravi Basin was to be pooled at 220 kV pooling station, to be developed by HPSEB and now Himachal Pradesh Power Transmission Corporation Limited (HPPTCL) in the time frame. However, the pooling station has not been developed by HPPTCL so far.

2. Budhil HEP (70 MW) being developed by M/s Lanco Green Power Private Limited (LGPPL) is in advance stage of construction and expected to be commissioned by June 2010. Lanco GPPL have applied to HP Govt. for forest clearance. It was understood that Forest Department has referred the matter to HPPTCL to certify optimum utilization of transmission corridor. It was understood that HPPTCL has revised the Master Plan without consulting CEA. It was proposed that Lanco GPPL would construct 220 kV S/C line with zebra conductor between Budhil HEP and Chamera III as an interim arrangement. After commissioning of Pooling station at Lahal this line is proposed be taken over or dismantled by HPPTCL on mutually agreed terms and Lanco GPPL would have to construct another transmission line i.e. 220 kV D/C line from Budhil HEP to Lahal pooling station. Further, against two 220 kV D/C lines between HP's pooling station and Chamera II pooling station to evacuate about 1000 MW of hydro generation capacity as proposed in the Master Plan, HPPTCL in its revised plan has considered one 220 kV D/C line.

3. Member (PS) observed that the Master Plan should not have been revised unilaterally and further the proposed arrangement was not adequate to evacuate the power as per planning criteria. Shri Bheshtoo, GM, HPPTCL referred to the discussion held between Managing Director, HPPTCL and Member (PS), CEA. Shri Bheshtoo also referred to correspondence received from forest department regarding conservation of ROW. Member (PS) stated that MD, HPPTCL did discuss some temporary arrangement for evacuation of power from Budhil HEP which CEA took as HP's internal matter. MD, HPPTCL never referred to modification of Master plan.

4. Further, Shri Bheshtoo was advised that as the Master Plan was finalized in consultation with HPSEB and HP Govt., in case any reference is received from the forest department regarding optimization of ROW, the reference should be replied suitably and CEA should be consulted before reviewing the Master Plan. Shri Bheshtoo said that Forest Department has suggested to raise the voltage level from 220 kV to 400 kV to reduce the number of corridors. Member (PS), CEA observed that any suggestion by the Forest Department which result in modification of Master Plan should be discussed with CEA and in the Standing Committee.

5. Due to urgency of the matter and to avoid bottling up of generation at Budhil HEP, following decisions were taken:

(i) Lanco GPPL may preferably LILO circuit of 220 kV D/C Chamera II – Chamera III line being constructed by PGCIL at their generating station as only one bay at Chamera III was available. With this, the final configuration for Budhil HEP would be 220 kV S/C Budhil-Chamera III & 220 kV S/C Budhil-Chamera II. This arrangement would provide reliability. The other option is to construct 220 kV S/C (zebra conductor) from Budhil HEP to Chamera III but this alternative suffers from loss of reliability in case of outage of the line and may result into bottling of generation at Budhil HEP. It was for Lanco GPPL to decide which alternative to adopt after weighing the risks. In either option, Budhil HEP would be connected to Chamera III by dedicated 220 kV link. However, constructing S/C line would be suboptimal from ROW consideration.

- (ii) It was decided that Pooling station at Lahal may be constructed as 400/220 GIS substation by HPPTCL. Lahal pooling station would be built by HPPTCL in phased manner in the time frame of remaining future hydro projects at Ravi Basin, namely Bharmour (45 MW), Kugti (45 MW), Hadsar (60 MW), Kutehar (260 MW), Bajoli Holi (200 MW) and Bara Bangal (200 MW). 220 kV portion of the substation would be commissioned first and then 400 kV Lahal-Chamera II Pooling point D/C charged at 220 kV. This would reduce ROW requirement as desired by the Forest Department. The line could be charged to 400 kV with development of upstream hydro projects.
- (iii) As Budhil HEP would be connected to Chamera III switchyard, HPPTCL should construct Lahal pooling station in the time frame of Kutehar HEP, being developed by JSW Energy which is likely to be commissioned next. Member (PS) cautioned that if HPPTCL failed to do so then they will again face same problem and this would hamper development of hydro potential in the State.
- (iv) Shri Bheshtoo informed that few 33 kV and 11 kV lines have been planned for evacuation of power from few small hydro projects in Ravi Basin. The magnitude of total generation was around 50 MW. Member (PS) stated that matter can not be discussed without full details and he advised that small hydro power should be brought to the nearest pooling station. It would not be optimal to develop a new 220 kV pooling station for such small generation.
- (v) CEA observed that in case of connectivity at Chamera III, Lanco GPPL have to only pay the regional transmission charges and losses and therefore pancaking of transmission charges/losses would be avoided.

Lanco GPPL informed that based on earlier proposal they had signed BPTA with Powergrid and PTC. Powergrid agreed to revise the BPTA in light of above.

The meeting ended with thanks to the Chair.

# भारत सरकार/Government of India केन्द्रीय विधुत प्राधिकरनण/Central Electricity Authority प्रणली आयोजना एवं 🛛 रीयोजना मूल्यांकनण प्रभाग/SP&PA Division आर के पुरम/R.K. Puram नई दिल्ली/New Delhi -110606

## [आई.एस.ओ. : 9001-2000]

संखया/No. 8/14/SP&PA-08/

दिनांक/Date: 20-MAY-2009

1. ED (Engg.) POWERGRID , Saudamini, Plot No. 2 Sector - 29, Gurgaon - 122 001. Fax: 95124 - 2571932	2. Managing Director Himachal Power Transmission Co. Ltd., Barobalia House, Khalini Shimla – 2 Fax: 0177-2626284
3. Vice President-E&M	4. General Manager-Energy,
Lanco Green Power Pvt. Ltd.	JSW Energy Limited,
Plot No. 397, Phase-III, Udyog Vihar,	The Enclave, New Prabhadevi Road, Opp
Gurgaon-122 016	Appasaheb Maratha Marg,
Haryana	Prabhadevi, Mumbai-400 025
Fax- 95124-4741400	Fax 022-24238393

Subject: Meeting convened by Member (PS), CEA on 18.05.2009 to discuss the issues relating to the evacuation system from Budhil HEP (70 MW) in Himachal Pradesh

Sir,

Please find enclosed the minutes of the Meeting taken by Member (PS), CEA on 18.05.2009 at 1100 hours in his office to discuss the issues relating to the evacuation system from Budhil HEP (70 MW). This is for kind information and further necessary action at your end.

Encl: as above

(Naresh Bhandari) Director