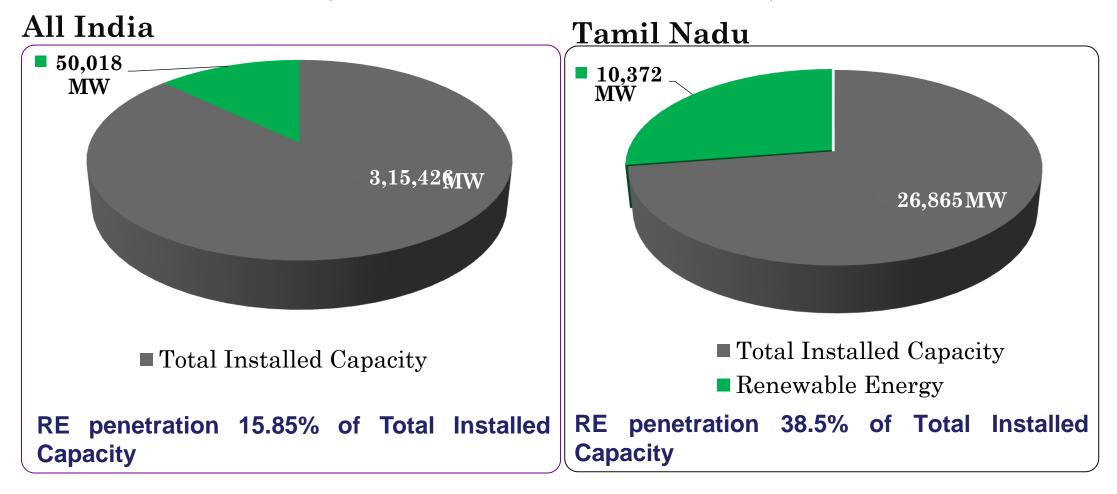

Presentation to CEA Technical Committee on Energy Storage Devices by SLDC, TANTRANSCO

Tamil Nadu – Conventional Generation Mix

Installed Capacity in MWtalled n 30th April 2017

 Installed Capacity in Installed MW Capacity in 	Capacity in MW TN Hydro 2308	Conventional Generator	Installed Capacity in MW
CGS Nuclear MW 1710 PURCHASE	13%	TN Hydro	o 2308
9% (LTOA, MTOA)		TN Therma	l 4320
3190		TN Gas	s 516
18%		TN IPH	7 46
		CGS Therma	l 4328
Insta		CGS Nuclear	c 1710
Capac		Capaci Gan Purchase	e 3190
		MW TN IP P	986
		746 Tota 4%	l 18104

Tamil Nadu – Renewable Energy Generation Mix



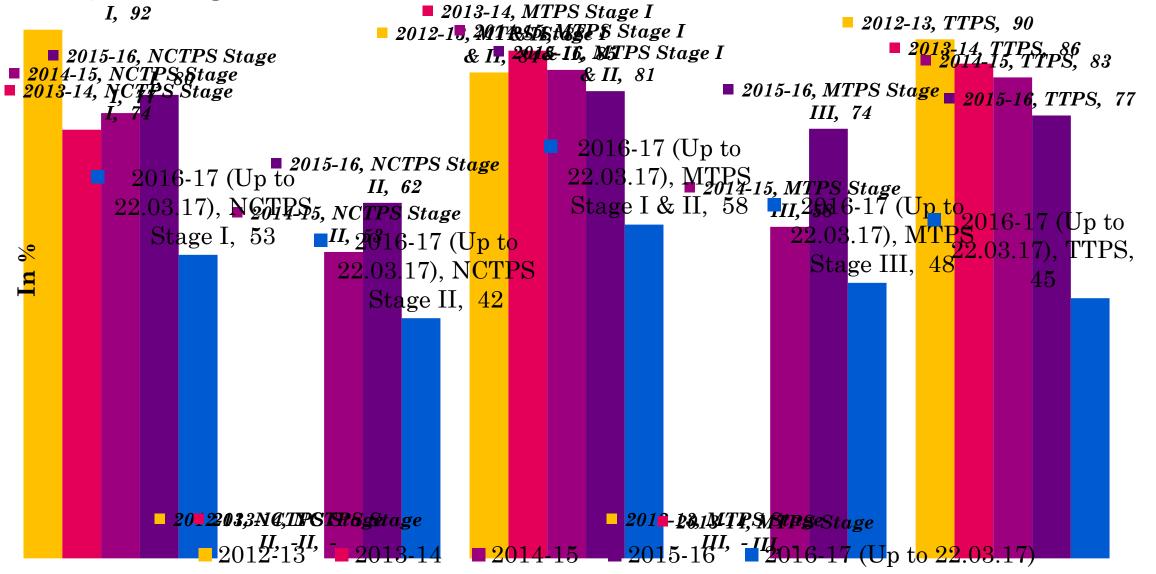
Tamil Nadu High Energy Consumption Details Achieved in a Day

Details	Achieved	On	
Consumption	$345.617~\mathrm{MU}$	29 th April 2016	
Demand	$15343~\mathrm{MW}$	29 th April 2016	
Wind Energy	97.351 MU	16 th August 2016	
Wind Generation	4906 MW	29 th August 2016	
Solar Energy	9.4 MU	$27^{ m th}$ March 2017	
Solar Generation	$1498~\mathrm{MW}$	27 th March 2017	

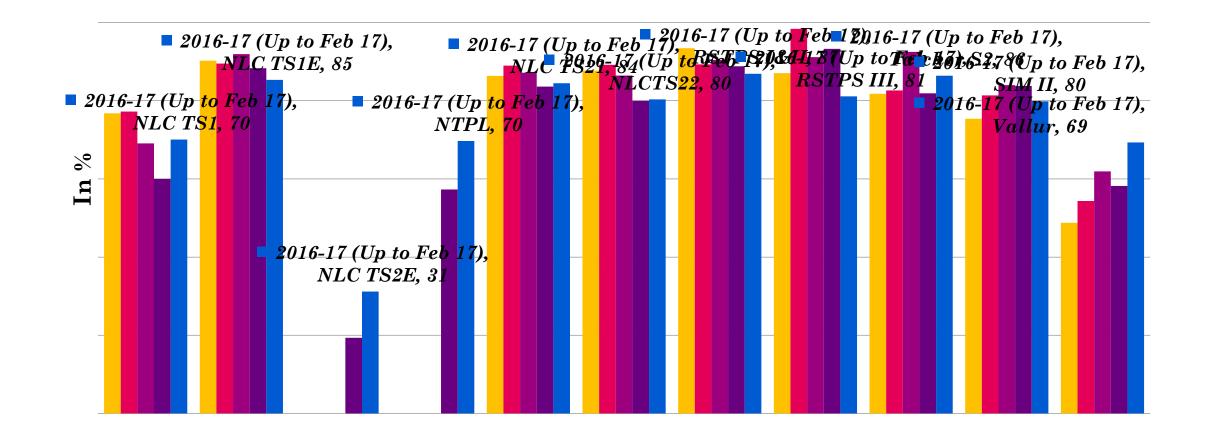
All India Installed Capacity Scenario

(as on 28th Feb 17 - source from CEA)

TN Contributes to 21% of country's RE installed capacity

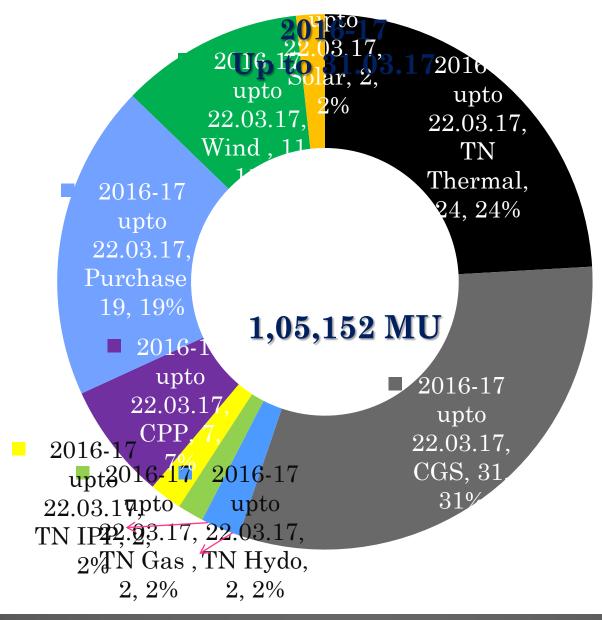

Action taken

- Load Shedding relaxed 1st June 2014
- Restriction & Control measures relaxed 5th June 2015
- AOH/COH for 2 to 3 TANGEDCO Thermal machines simultaneously-completed in June to September
- 1 or 2 TANGEDCO Thermal Stations -Reserve Shut down
- AOH of CGS Insisted in SRPC to complete in June to September.
- Sale of Power out the State Resorted


Thermal Stations PLF

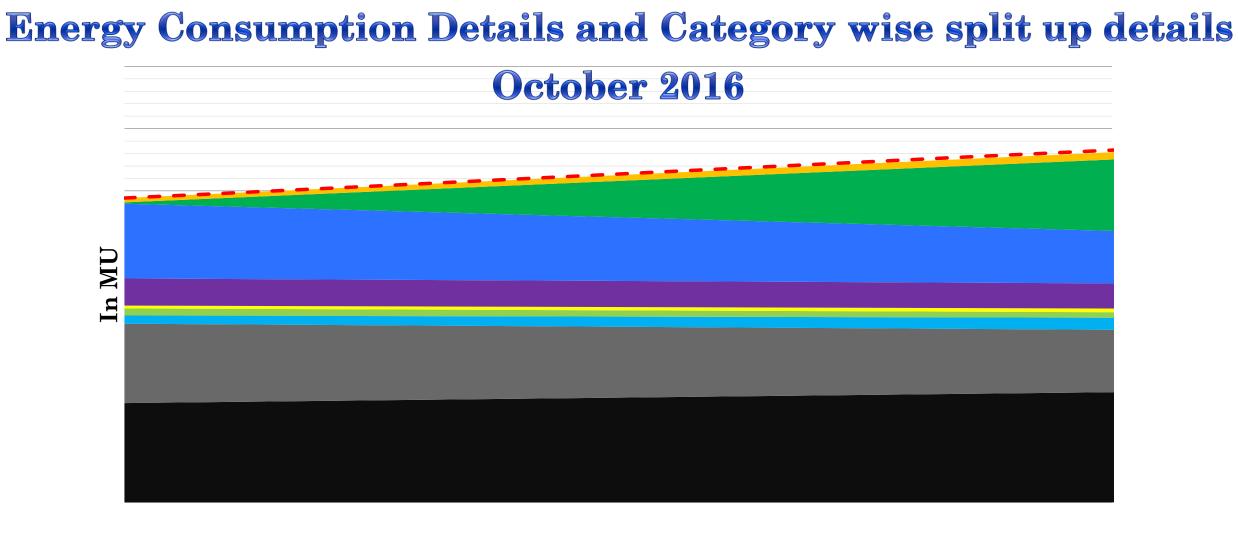
TNEB Thermal Power Stations PLF

2012-13, NCTPS Stage

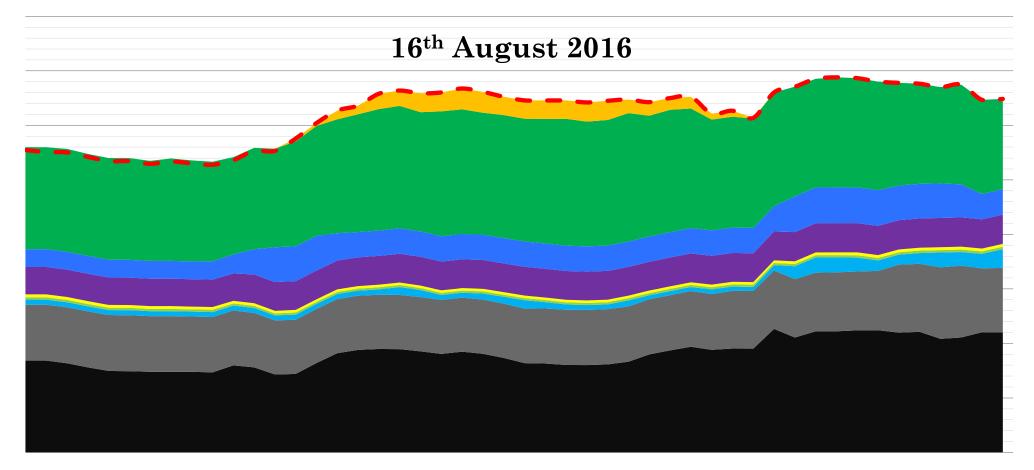


CGS Stations PLF

■ 2012-13 ■ 2013-14 ■ 2014-15 ■ 2015-16 ■ 2016-17 (Up to Feb 17)

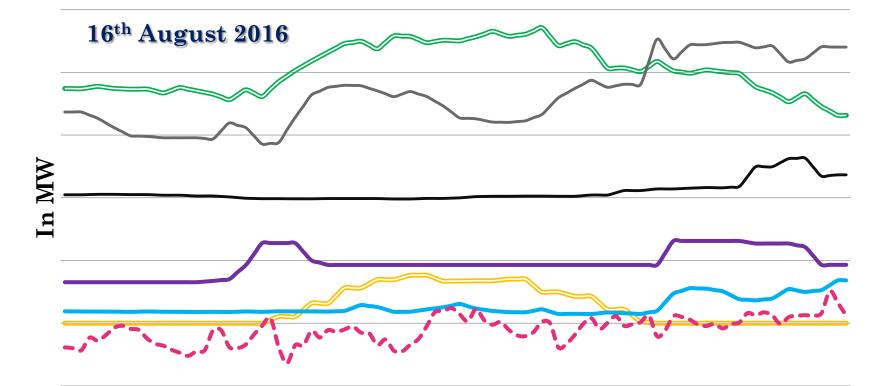

Year wise - % Contribution of Various Sources

TN Thermal
Gas
CPP, Cogen, Biomass
Wind
Energy Consumption in MU

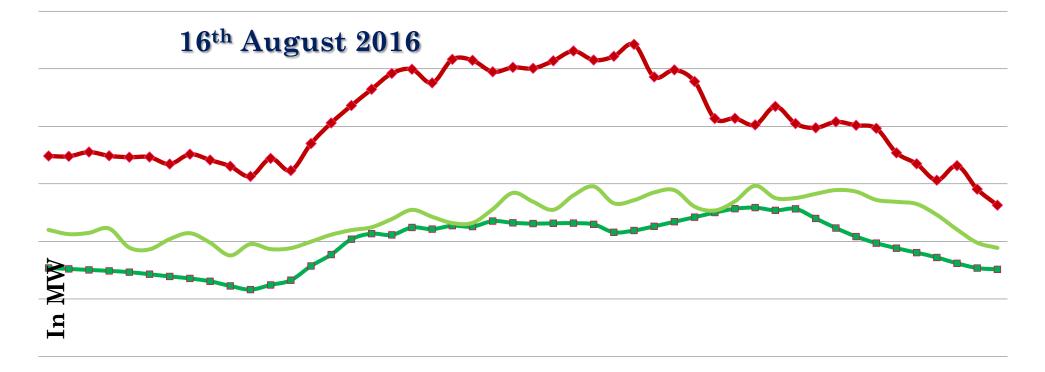


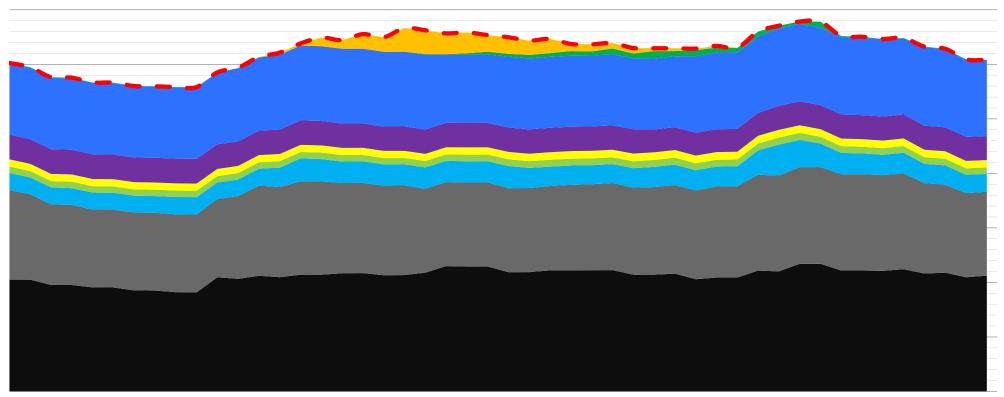
TN Thermal
Gas
CPP, Cogen, Biomass
Wind
Energy Consumption in MU

Wind Accommodation – Effects on Other Sources of Generation in a day during

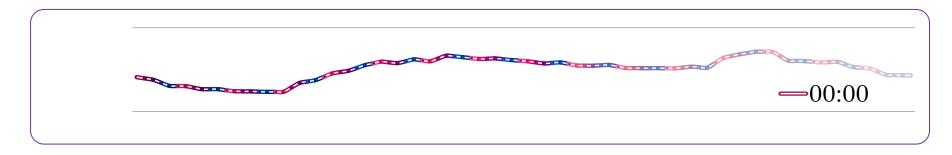

High Wind day – 16th August 2016
 No/Low Wind day – 15th October 2016

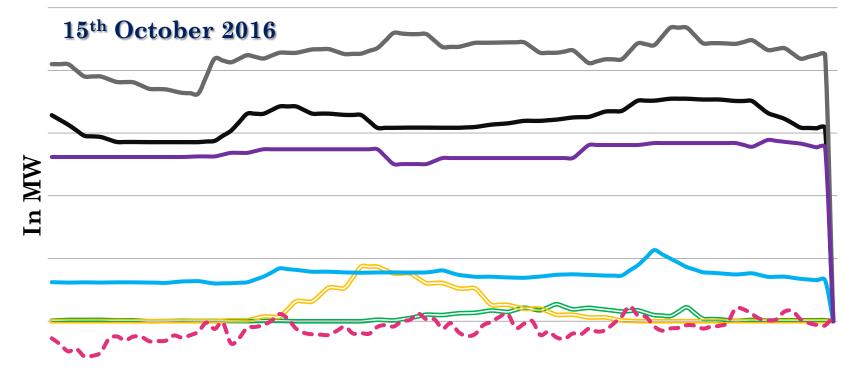
Hourly Generation Split up – on High Wind Absorption day



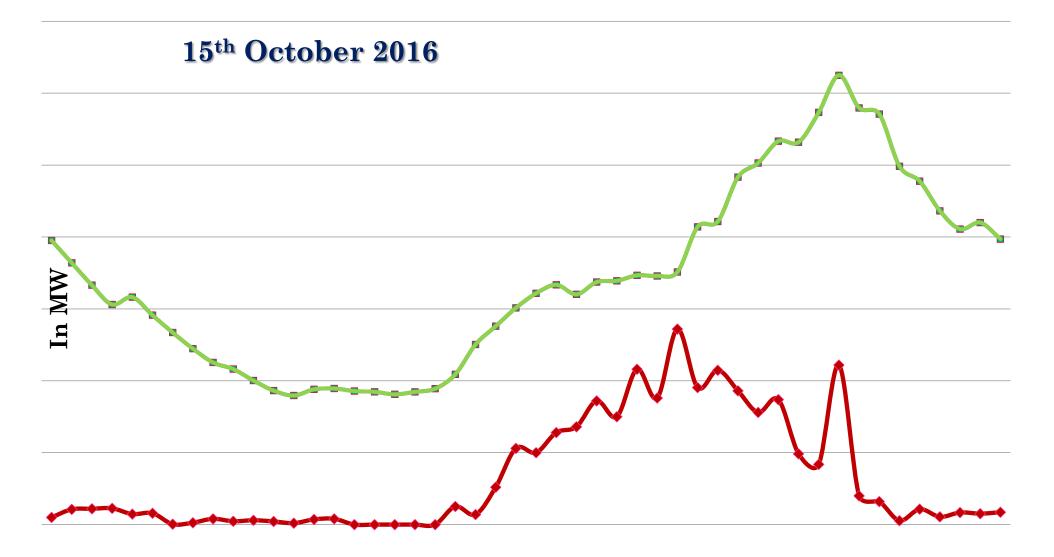


NIWE Forecasting Vs Actuals During High Wind Season




-Actual as per TNEB---NIWE DayAhead Forecast---NIWE Intra Day forecast

Hourly Generation Split up – on Low Wind day 15th October 2016



NIWE Forecasting Vs Actuals During Low Wind Season

-Actual as per TNEB---NIWE DayAhead Forecast---NIWE Intra Day forecast

Energy Consumption Split up Details during

16th August 2016

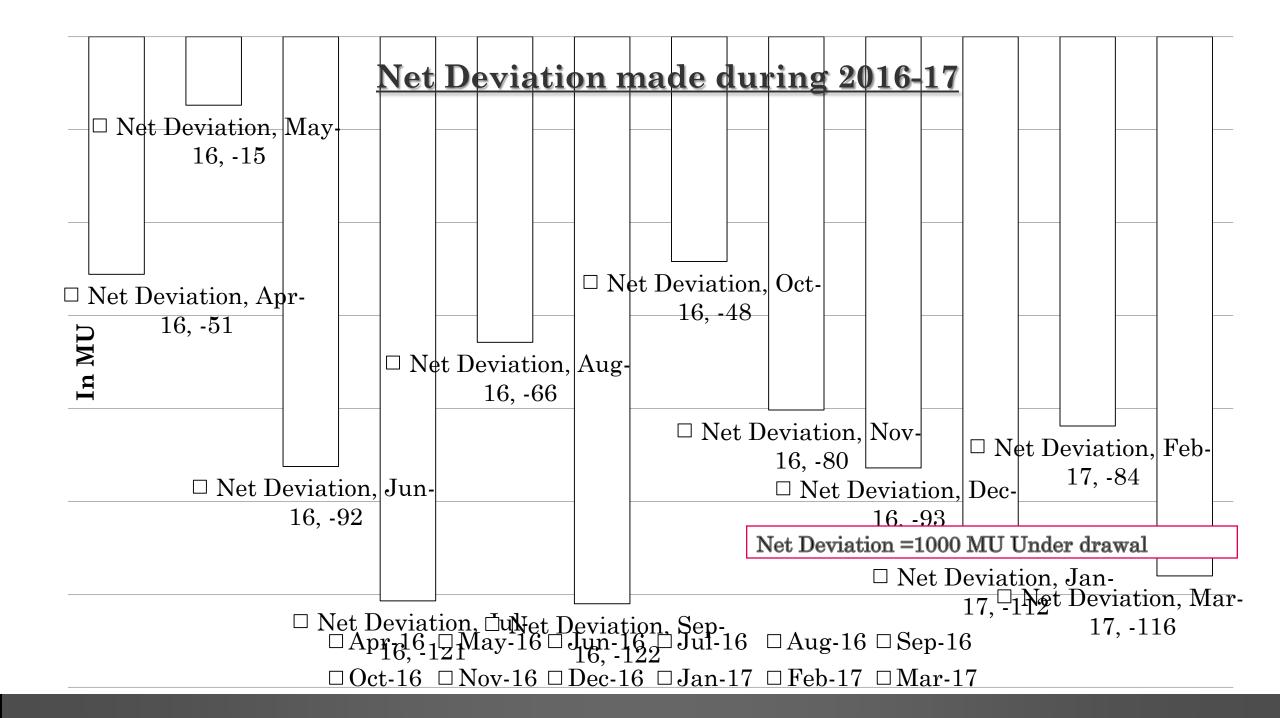
15th October 2016

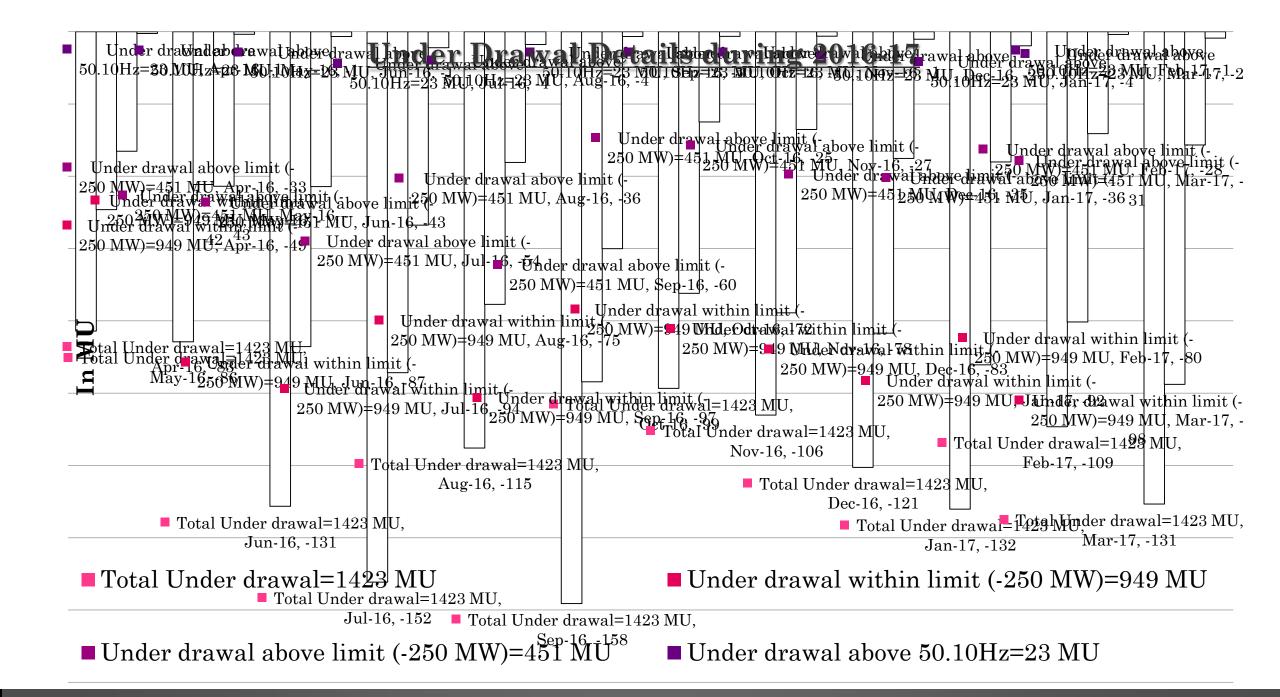
Generator Details	Energy Consumptio n in MU	% of Contributio n	Generator Details	Energy Consumptio n in MU	% of Contributio n
TN Hydro	6.539	2.20	TN Hydro	17.608	5.90
TN Thermal	50.398	16.97	TN Thermal	76.832	25.74
TN Gas	1.963	0.66	TN Gas	5.820	1.95
TN IPP	2.365	0.80	TN IPP	6.516	2.18
CGS	85.263	28.70	CGS	101.599	34.04
Purchase	23.057	7.76	Purchase	63.783	21.37
CPP	24.935	8.39	CPP	20.616	6.91
Wind	97.351	32.77	Wind	1.590	0.53
Solar	5.191	1.75	Solar	4.071	1.36
Total	297.062		Total	298.435	

Additional Financial Burden

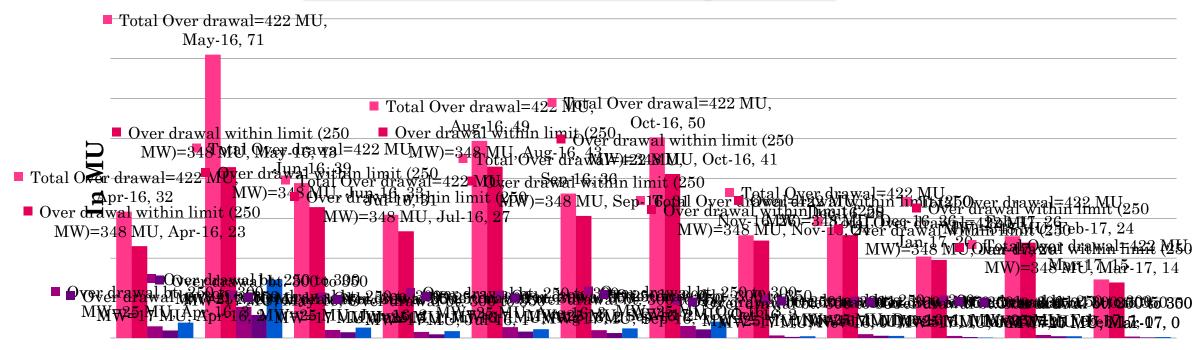
Accommodation of maximum wind generation results

- Deviation Settlement Mechanism
- Surrendering of Central Generating Stations power.
- Backing down power purchase from LTA/MTOA Generators.
- Purchase of high cost power from IPPs.
- Intraday purchase during sudden withdrawal of wind generation
- Backing down the TANGEDCO Thermal Stations.


On account of Banking

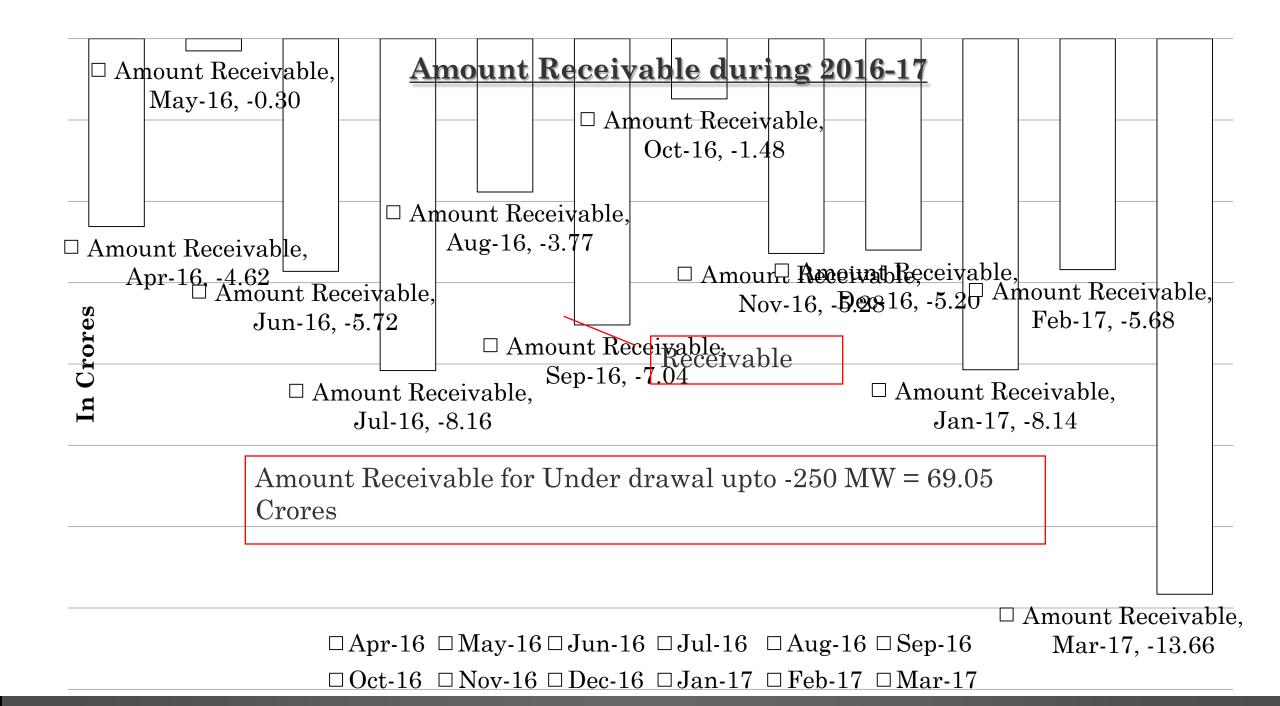

- The unutilised energy generated during wind seasons at low cost are banked and allowed to utilise the same throughout the year from 1st April to 31st March of the following year and adjusted during non-windy season.
- The adjustment of banked energy during non wind season will lead to revenue loss to TANGEDCO.
- The balance energy as on 31st March of every year may be encashed at the rate of 75% of the respective applicable wind energy tariff Or 75% of the pooled cost notified by TNERC in the case of REC.

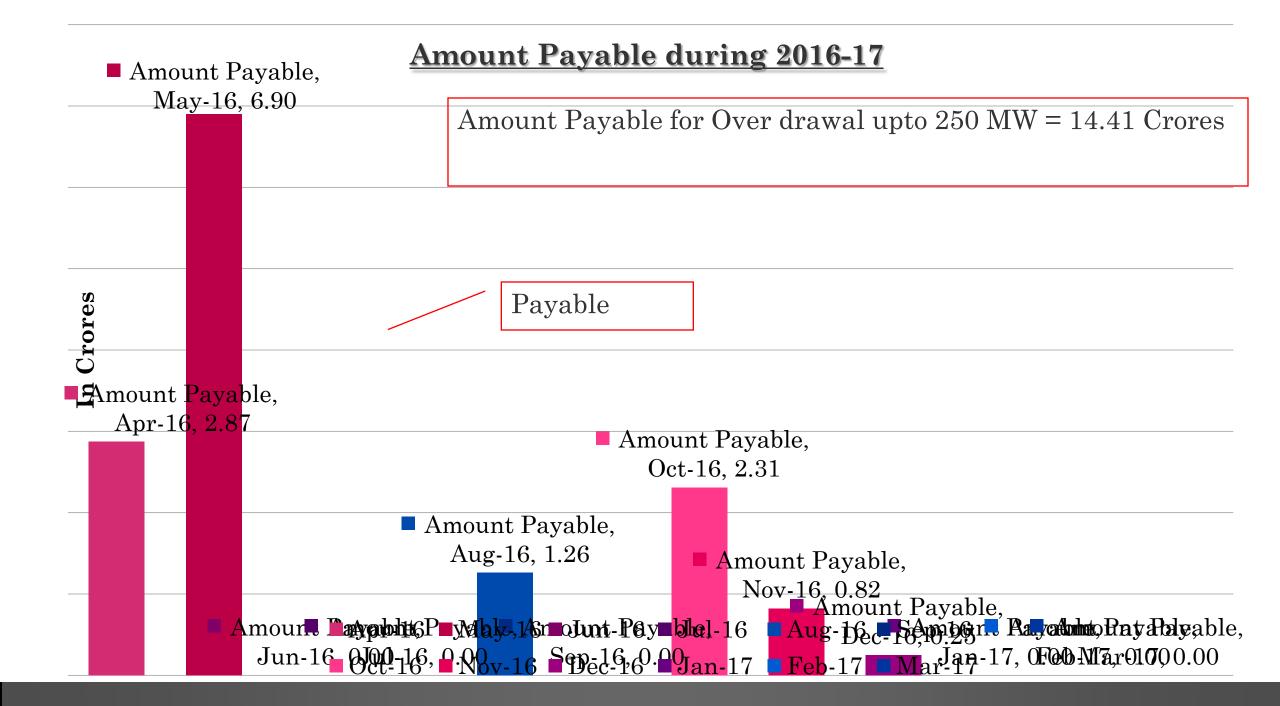
<u>TANGEDCO to accommodate wind generation by losing</u> <u>commercially on various accounts indirectly</u>

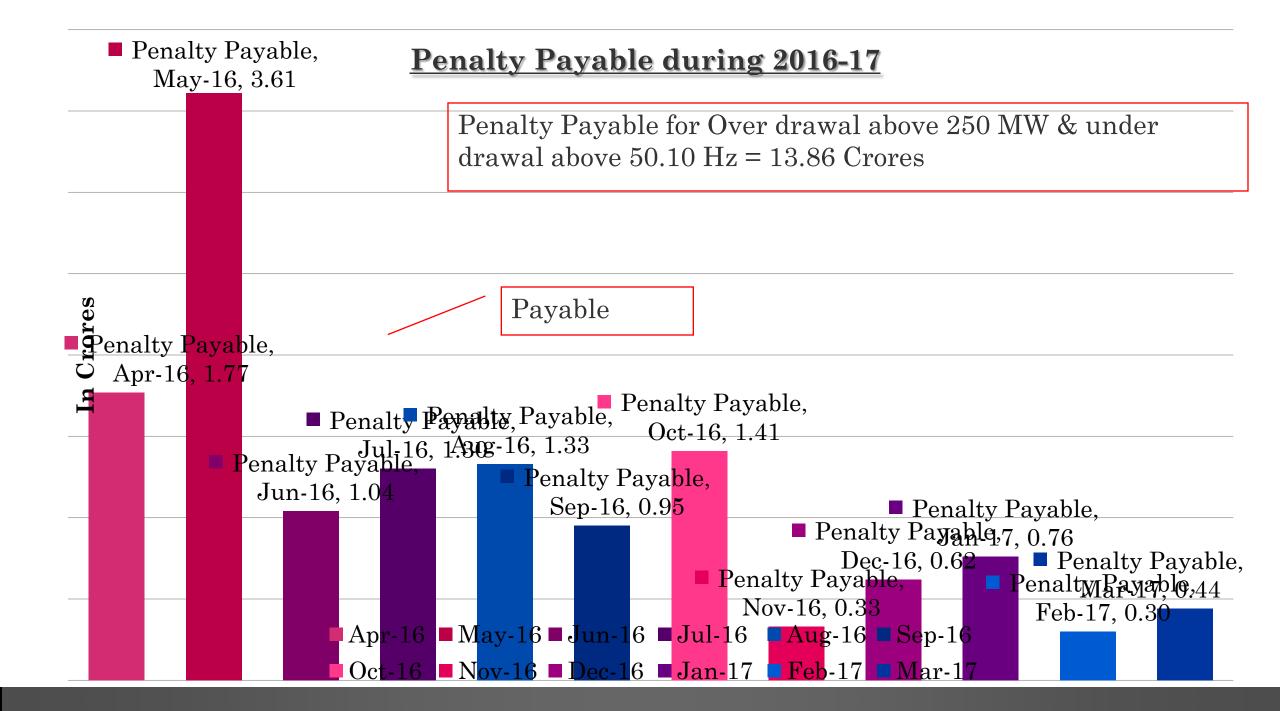

June to September 16

Sl. No.	Due to	Rs. In crores	
1	On account of Deviation Settlement Mechanism as per CERC Regulations (for the period from 01/06/16 to 25/09/16)	68.17	
2	On account of surrendering CGS power	181.30	
3	On account of backing down the power from LTA/MTOA purchase	356.47	
4	Generation from IPP utilized due to fall of Wind during the month	16.75	
	Total amount	622.69	

Over Drawal Details during 2016-17




Total Over drawal=422 MU


• Over drawal bt. 250 to 300 MW=25 MU

• Over drawal above 350 MW=33 MU

- Over drawal within limit (250 MW)=348 MU
- Over drawal bt. 300 to 350 MW=17 MU

Developments in Transmission Corridor

 TANTRANSCO developed the 400 KV Transmission corridors in order to accommodate the wind energy

 Tamilnadu Wind Power Corridor 846 CKMS – Rs.1418.18 crores

2

3

• Tamil Nadu Inter State transfer of Power 696 CKMS -Rs. 993.43 crores

<u>Hydro – Pumped Storage Projects</u>

To improve spinning reserve in Tamil Nadu control area, the following Hydro pumped storage projects are under pipeline.

• Kundah – 500 MW (4 X 125 MW) – expected by 2020-21

• Sillahalla - 2000 MW (4 x 500 MW) – expected by 2021-22

• Mettur – 500 MW (4 X 125 MW)

Constraints

- Installed capacity of Renewable Energy in Tamilnadu control area is the highest in India.
- Balancing in Tamilnadu control area is not available
- Share from NPCIL 1147 MW treated as infirm power
- To meet out the demand Long term and medium term contracts
- Continuous variations TANGEDCO Thermal
 Stations Based on merit order forced outages

inoroagod

- CGS power surrendered LTA, MTOA generators not scheduled – Based on merit order.
- Some of the IPP not able to off take granted quantity of Fuel
- Intra State Generators are requested to back down their generation to technical minimum / shutdown resort legal action
- STOA Revision possible before 3 days

Suggestions

- 1. Forecasting and Balancing mechanism are the essential tools to aid the integration of the increasing amount of wind energy.
- 2. Reliable Forecasting would help us to make Renewable Energy appear more like a conventional power station.
- 3. Storage technology to store the renewable energy have to be cost effective.
- 4. Available Transfer Capability (ATC) margin between Regions to be revised practically

- 5.Compensation have to be considered by MNRE by way of integration charges for accommodating Renewable Energy in Tamilnadu control area for the following items
 - for maintaining thermal units at low PLF
 - Commercial losses to TANGEDCO on various accounts indirectly as given in table.
 - Expenditure made on to increase the Transmission corridor capability
- 6.Special Green Corridor to a quantum of 500 to 1000 MW immediately for SR to NR through WR & ER

TS TRANSCO TS SLDC

Solar and Wind Generation

- ➢ Presently in Telangana state 100.8 MW capacity of Wind generators and 1321 MW capacity of Solar generators are installed.
- ➢ Out of 1321 MW, 884 MW (132 KV and above 663 MW , 33kv & below 221 MW)capacity is integrated with SLDC.
- ▶ 1765 MW of Solar Plants are expected to be commissioned by the end of 2017.
- As wind generation is very low , adverse effects of variability of wind generation is not observed.
- Regulations on Forecasting, Scheduling & Deviation settlement mechanism for intrastate wind and solar generators are to be issued by Hon'ble TSERC.
- However, all wind and solar generators were addressed to submit Day-ahead and Week-ahead schedules for maintaining grid discipline and grid security as envisaged under the Grid Code.
- As solar generation in Telangana state is distributed in different districts, sudden variation of solar generation does not arise.
- However peak Solar generation is realized between 11.00 hours and 13.00 Hours. Agriculture Group supply timings are suitably modified to utilize this peak Solar generation for meeting peak demand.
- Day time solar generation is utilised for agricultural loads .

Month Wise Installed Capacity & Generation of Solar & Wind for the FY 2016-17

		So	lar	Wi	nd
S.No.	Month	Installed	Generation in	Installed	Generation in
		Capacity (MW)	MU.	Capacity (MW)	MU.
1	April-16	599.406	69.489	77.7	4.935
2	May-16	608.416	76.765	77.7	13.084
3	June-16	705.406	60.777	98.7	21.473
4	July-16	840.614	76.954	98.7	28.576
5	August-16	842.606	97.784	98.7	34.638
6	September-16	845.706	78.045	98.7	17.605
7	October-16	868.836	119.965	98.7	11.887
8	November-16	892.886	124.407	98.7	14.693
9	December-16	1014.886	124.711	98.7	17.595
10	January-17	1066.386	133.131	98.7	19.207
11	February-17	1224.386	162.316	98.7	13.412
12	March-17	1321.066	214.598	100.8	14.828
	Total Generation		1338.942		211.933

SOLAR & WIND INSTALLED CAPACITY AS ON 24-04-2017

SI.No	District	Solar(MW)	Wind(MW)	Total(MW)
1	Mahabubnagar	491.592	0	491.592
2	Medak	343.614	0	343.614
3	Nalgonda	73.73	0	73.73
4	Ranga Reddy	154.13	100.8	254.93
5	Nizamabad	61	0	61
6	Karimnagar	109	0	109
7	Warangal	15	0	15
8	Adilabad	73	0	73
	Total	1321.066	100.8	1421.866

INSTALLED CAPACITY IN MAHABOOBNAGAR DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	100	0	100
2	132 KV	155	0	155
3	33 KV	234.592	0	234.592
4	11 KV	2	0	2
Total		491.592	0	491.592

INSTALLED CAPACITY IN MEDAK DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	171.5	0	171.5
3	33 KV	171.364	0	171.364
4	11 KV	0.75	0	0.75
Total		343.614	0	343.614

INSTALLED CAPACITY IN NALGONDA DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	0	0	0
3	33 KV	72.73	0	72.73
4	11 KV	1	0	1
Total		73.73	0	73.73

INSTALLED CAPACITY IN RANGA REDDY DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	80	100.8	180.8
3	33 KV	73.13	0	73.13
4	11 KV	1	0	1
Total		154.13	100.8	254.93

INSTALLED CAPACITY IN NIZAMABAD DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	20	0	20
3	33 KV	41	0	41
4	11 KV	0	0	0
Total		61	0	61

INSTALLED CAPACITY IN KARIMNAGAR DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	34	0	34
3	33 KV	75	0	75
4	11 KV	0	0	0
Total		109	0	109

INSTALLED CAPACITY IN WARANGAL DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	0	0	0
3	33 KV	15	0	15
4	11 KV	0	0	0
Total		15	0	15

INSTALLED CAPACITY IN ADILABAD DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	48	0	48
3	33 KV	25	0	25
4	11 KV	0	0	0
Total		73	0	73

SOLAR & WIND CAPACITY UNDER PROGRESS AS ON 24-04-2017

SI.No	District	Solar(MW)	Wind(MW)	Total(MW)
1	Mahabubnagar	409	0	409
2	Medak	414.5	0	414.5
3	Nalgonda	266	0	266
4	Ranga Reddy	24	100	124
5	Nizamabad	347	0	347
6	Karimnagar	81	0	81
7	Warangal	99	0	99
8	Adilabad	115	0	115
9	Khammam	10	0	10
	Total	1765.5	100	1865.5

SOLAR & WIND CAPACITY UNDER PROGRESS AS ON 24-04-2017 IN MAHABOOBNAGAR DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	200	0	200
2	132 KV	100	0	100
3	33 KV	109	0	109
Total		409	0	409

SOLAR AND WIND CAPACITY UNDER PROGRESS AS ON 24-04-2017 IN MEDAK DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	45	0	45
2	132 KV	305	0	305
3	33 KV	64.5	0	65
То	tal	414.5	0	414.5

SOLAR AND WIND CAPACITY UNDER PROGRESS AS ON 24-04-2017 IN NALGONDA DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	100	0	100
2	132 KV	98	0	98
3	33 KV	68	0	68
То	tal	266	0	266

SOLAR AND WIND CAPACITY UNDER PROGRESS AS ON 24-04-2017 IN RANGA REDDY DISTRICT

Sl.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	0	100	100
3	33 KV	24	0	24
То	tal	24	0	124

SOLAR AND WIND CAPACITY UNDER PROGRESS AS ON 24-04-2017 IN NIZAMABAD DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	50	0	50
2	132 KV	227	0	227
3	33 KV	70	0	700
То	tal	347	0	347

SOLAR AND WIND CAPACITY UNDER PROGRESS AS ON 24-04-2017 IN KARIMNAGAR DISTRICT

Sl.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	66	0	66
3	33 KV	15	0	15
То	tal	81	0	81

SOLAR AND WIND CAPACITY UNDER PROGRESS AS ON 24-04-2017 IN WARANGAL DISTRICT

Sl.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	87	0	87
3	33 KV	12	0	12
То	tal	99	0	99

SOLAR AND WIND CAPACITY UNDER PROGRESS AS ON 24-04-2017 IN ADILABAD DISTRICT

SI.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	100	0	100
3	33 KV	15	0	15
То	tal	115	0	115

SOLAR AND WIND CAPACITY UNDER PROGRESS AS ON 24-04-2017 IN KHAMMAM DISTRICT

Sl.No	Voltage level	Solar(MW)	Wind(MW)	Total(MW)
1	220 KV	0	0	0
2	132 KV	0	0	0
3	33 KV	10	0	10
То	tal	10	0	10

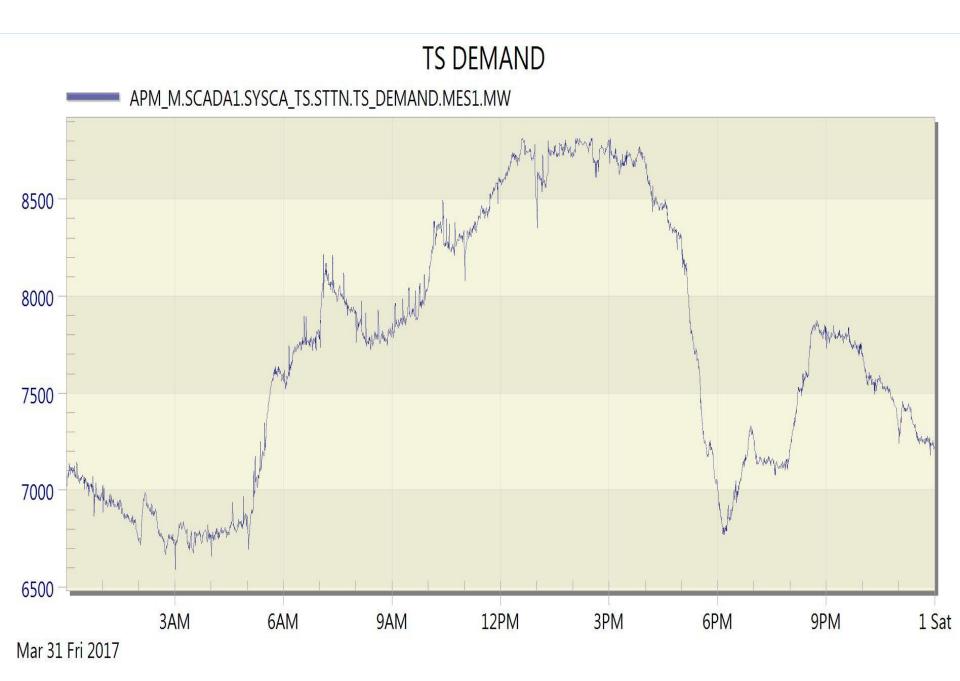
PROBLEMS ENCOUNTERED IN DEALING WITH VARIABLE AND INTERMITTENT GENERATION FROM RENEWABLES

- Forecasting.
 - Weather data.
- Agricultural demand increased 25% in a year and depends on the monsoons.
- Demand side management. Adjusting Agl loads.
- Transmission connectivity.
- Storage.
- Effect of other states in regional grid.

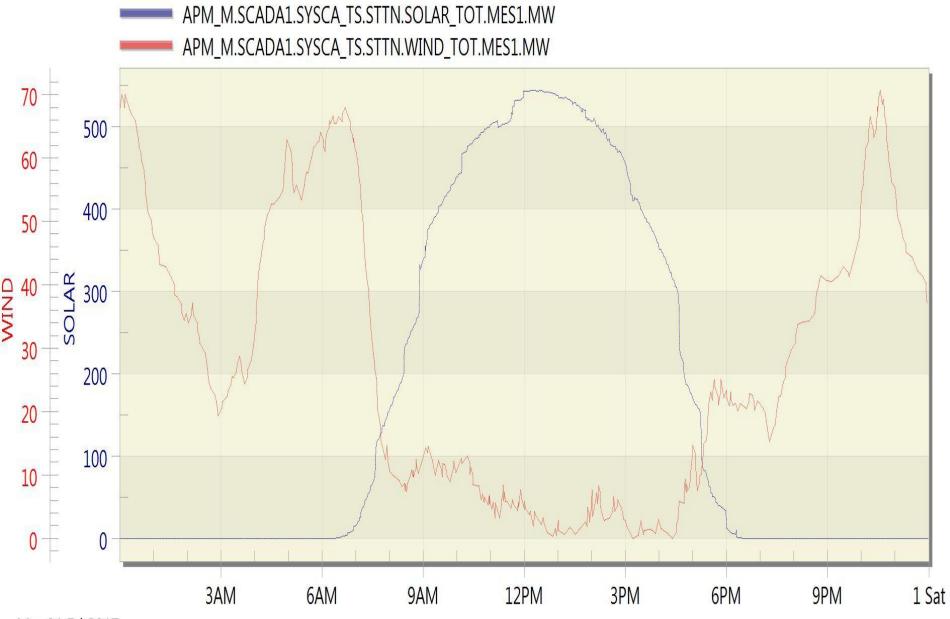
Steps taken to handle the problem

- TS has only 100.8 MW wind generation.
- Better forecasting.
- Grid integrated solar ~1321 MW and coming ~1765 MW. Planned agriculture supply in the day time.
- Two pumped storage works are in progress.
- Initiate storage capacity addition in solar rich districts.
- To meet future demand building up transmission network.
- By increasing/decreasing Thermal and Hydel Generation as per requirement.

AVAILABLE PUMPED HYDRO PROJECTS


S.NO.	NAME OF THE STATION	UNIT WISE CAPACITY	CAPACITY IN MW
1	Srisailam Left Bank Power House(SSLM LBPH)	6x176MW	1056MW
2	Nargarjuna Sagar Power House	7x122MW	854MW

LIMITATIONS

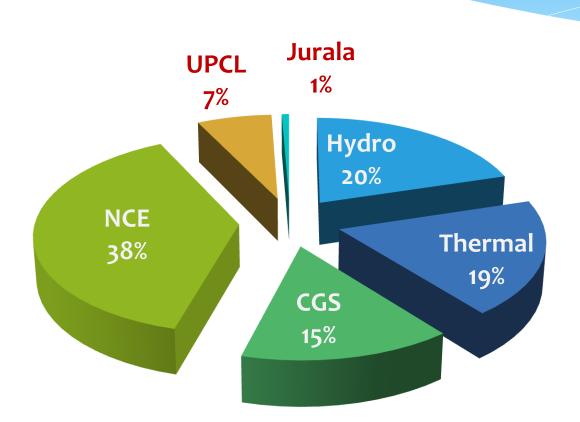

- Srisailam Left Bank Power House (SSLM LBPH) will be available only when Nagarjuna Sagar reservoir level is above 540 ft (Net head should be more than 100 ft). If the Nagarjuna Sagar level is below this 540 ft, a Wear Dam is required which is under renovation.
- Nagarjuna Sagar Power House Pumps will be available only after completion of Tailpond works which are in progress.

Intra-state transmission/distribution system facing congestion due to RE generation

- Solar generation in TS is distributed.
- Wind only 100.8 MW.
- To meet additional solar, strengthening the transmission/distribution system.

SOLAR&WIND

Mar 31 Fri 2017



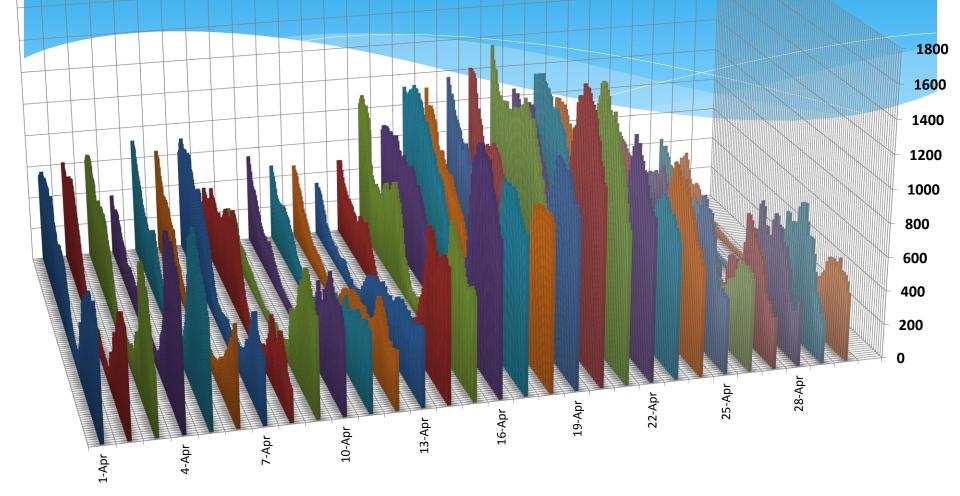
KARNATAKA POWER TRANSMISSION CORPORATION LIMITED

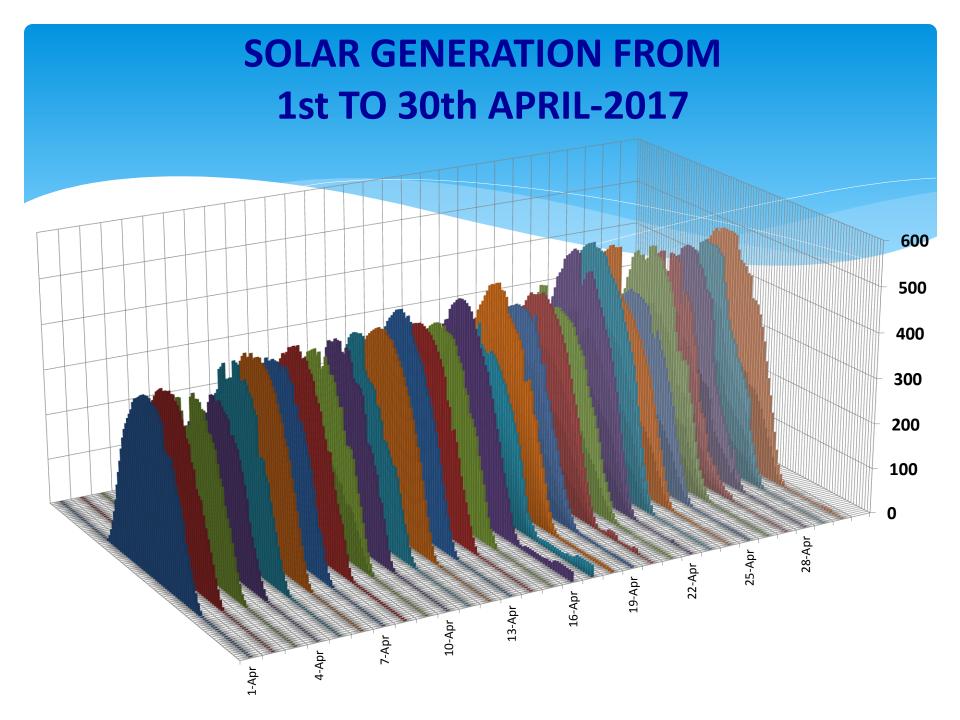
09-05-2017

(i) <u>Variability of Wind and</u> <u>Solar Generation</u>

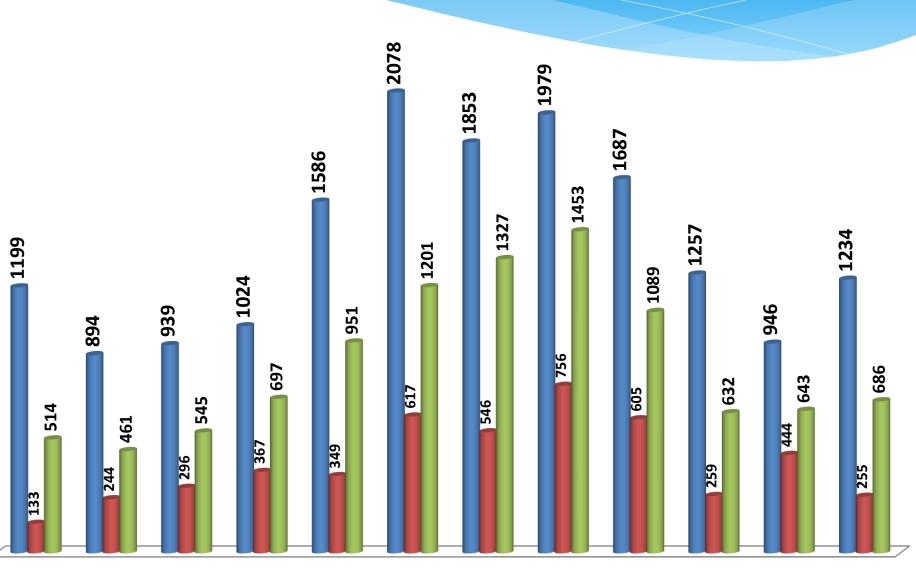
Source-wise Installed Capacity

G	Inst. Cap.
Source	(MW)
Hydro	3670
Thermal	3445
CGS	2694
NCE	6972
UPCL	1200
Jurala	117
Total	18098
	3

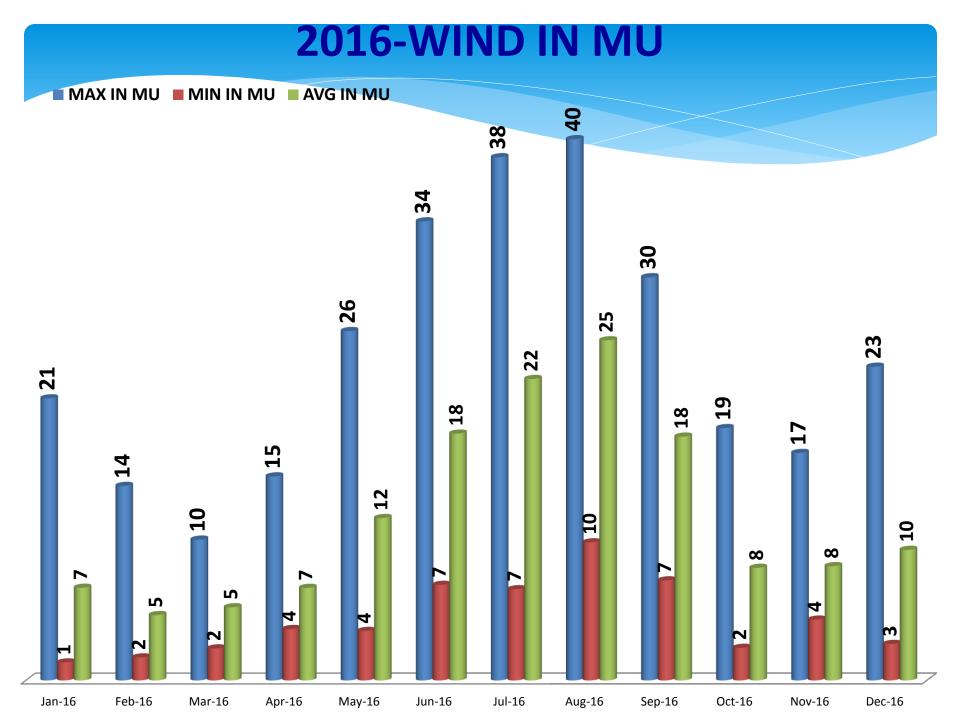

Renewable Energy Projects


Renewable Energy Source	Potential in MWs	Capacity Allotted in MWs	Capacity commissioned in MWs
Wind	13,236	12,752	3241
Small Hydro	3,000	2,893	843
Solar	10,000	203	507
Bio-mass	1,000	258	134
Co-generation	1,500	1,560	2246
Total	28,736 4	17,668	6972

Power Supply Position as on 30.04.17


μ				
	Details		Date	Time
	Maximum Demand (MW)	9987	10-APR-17	11:00hrs
	Minimum Demand (MW)	6565	29-APR-17	
	Maximum Consumption (MU)	225.05	01-APR-17	
	Minimum Consumption (MU)	197.93	16-APR-17	
	Maximum Wind (MW)	1621	21-APR-17	20:42hrs
	Maximum Wind (MU)	19.15	21-APR-17	
	Maximum Solar (MW)	537	23-APR-17	12:00hrs
	Maximum Solar (MU)	4.11	23-APR-17	
Lc	oad shedding in MU for the month of APRIL-2017	0		
F	RE installed Capacity in MW as on 30.04.2017	Wind: 3354.68 Solar: 1050	APRIL-17	

WIND GENERATION FROM 1st TO 30th APRIL-2017



Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 Jul-16 Aug-16 Sep-16 Oct-16 Nov-16 Dec-16

(ii) <u>Augmentation of</u> <u>Transmission Infrastructure</u>

WORKS PROPOSED UNDER GREEN ENERGY CORRIDOR

SI. No	Name of the Work	Amount Rs Lakhs
1	Establishing 2x500 MVA, 400/ 220 kV sub-station at Gadag(Doni) in Mundaragi Taluk, Gadag District	13249
2	A) Construction of 220 kV SC line on DC towers for a length of 15.168kMs from the existing 400kV PGCIL station at Beerenahalli (Hiriyur) to existing 220/66/11kV KPTCL substation at Hiriyur in Chitradurga District in existing corridor of 220kV SC line from Hoysalakatte to 220/66/11kV SRS at Hiriyur(partly in new corridor i.e from PGCIL point to link 220kV SC line from Hoysalakatte to 220/66/11kV SRS at Hiriyur. B)Construction of 220kV DC line on DC towers from existing 220/66kV substation Chitradurga to existing 220/66kV substation Hiriyur in Chitradurga District in existing corridor (partly MC between LILO point of Guttur-Hiriyur linr to 220kV substation Chitradurga in the existing corridor(5.255kMs)) for a length of 36.506kMs	3272
	Establishing 2x500 MVA, 400/220 kV GIS Substation at Jagalur in Jagalur Taluk, Davanagere District with additional 220 kV DC line to Chitradurga	

WORKS PROPOSED UNDER GREEN ENERGY CORRIDOR

SI. No	Name of the Work	Amount Rs Lakhs
4	Construction of 220kV DC line for a length of 26 kms from 220kV Bidnal substation to LILO one of the circuits of 220kV Narendra- Haveri DC line, in Haveri and Dharwad districts	
5	Establishing 2x100 MVA 220/66 kV and 1x12.5MVA 66/11kV substation at Hosadurga , Hosadurga taluk, Chitradurga district with 220 kV DC line from proposed 400/220 kV CN Halli sub-station	
	Establishing 2x100MVA, 220/66 kV and 1x8MVA 66/11kV substation at Shivanasamudra , Malavalli taluk, Mandya district.	9401
7	Establishing 2x100 MVA, 220/110 KV & 1x10 MVA, 110/11 KV Substation at Mughalkod in Raibag Taluk, Belgaum District with 220 kV DC LILO of Chikkodi –Ghataprabha line	
	TOTAL	90619

Works Proposed by KPTCL for RE evacuation

SI. No	Name of the Work	Amount Rs Lakhs			
1	Construction of 66kV DC line between PD Kote- Hariyabbe-Hiriyur	1500			
2	Reconductoring 220kV DC line between Gadag-Dhoni-Lingapura by HTLS	18000			
3	110kv 2 nd circuit between Yelaburga- Kustagi	1000			
4	2 nd Circuit 220kV line LILO to 220kV Honnali Sub-station				
5	2nd Circuit 110kV line LILO to 110kV Shirahatti	250			
6	2nd Circuit 220kV line LILO to 220kV Athani	2000			
7	4th 100MVA, 220/110kV transformer at Gadag	600			
8	66KV DC line with Drake to Nagalmadike sub-station	1800			
	TOTAL	26650			

(iii) <u>To propose utilisation of</u> States own balancing plants

HYDEL GENERATING STATIONS IN KARNATAKA

SI. No.	Power Station	Capacity in MW	
1	Sharavathy	1035	Governable by SLDC during
2	Nagjhari	885	real time grid operation to an
3	Varahi	460	extent of 2500MW to
4	Tailrace and Other Projects	674	accommodate wind Energy
	Total	3054	

(iv) An assessment of the quantum of electric storage system for balancing, which could be placed near the RE generation sources

Pumped Storage

- * KPCL has planned 2000 MWs pumped storage Plant in Sharavathy River basin
- * 2000 MWs pumped hydro support during peak hour requirement.
- *2000 MWs power requirement during off peak hour.
- * Target year of completion : 2021-22

(vi) <u>Communication</u> requirements for obtaining data of Wind and Solar Generators

SCADA in KPTCL

- * KPTCL and ESCOMs have provided SCADA RTUs to every sub-stations in the State
- * Wind and Solar injection in at all feeders of 11 kV upto 220 kV is available on real time
- * The STU pooling stations are connected to the Main Control Centre of SLDC through a satellite network
- * VSAT communication is provided to every station for voice and SCADA data.

Real time data of Wind and Solar Generators

- * Real time data from every Wind and Solar Generator is available on SCADA
- * As such, the Master Control Centre at SLDC can visualise all Renewable Generation and this data is also visible at all the Distribution Control Centres of ESCOMs.
- * All panel meters at the pooling stations are connected to SLDC through VSAT network and Energy meter data at all injection points is also available.

IPPs -HESCOM

L NO	NAME OF IPP	KPTCL STN	VTG(kV)	ACTIVE	REACTIVE	SL NO	NAME OF IPP	KPTCL STN	VTG(kV)	ACTIVE	REACTIVE
1	AMBEWADI 220kV TOTAL IPPs	0.00 +				6	BIDNAL 220kV TOTAL IPPs	3.90 \			
	PARRY SUGAR(GMR)	HALIYAL 110kV	112.71	1.23 1	0.46 t		BPCL	NARAGUND 110kV	109.22	3.92 🖡	0.20 1
							DHARWAD BIO ENERGY	NAVALGUND 110kV	109.46	0.08†	0.21 †
	ATHANI 220kV TOTAL IPPs	6.39↓									
	RENUKA SUGARS	ATHANI110kV	109.45	0.32 1	0.11́↓	7	CHIKKODI 220KV TOTAL IPPs	36.42			
	krishna sahakari sakkare karkhane niyam	it ATHANI 220kV	63.87	6.33 1	3.28↑		DOODAGANGA SUGARS	CHIKKODI 220kV	107.90	0.23 (0.16
							HIRA SUGARS(Kirloskar)-1	SANKESHWAR 110kV	106.01	0.26 1	0.35 1
							HIRA SUGARS(Kirloskar)-2	SANKESHWAR 110kV	106.01	0.00	0.02 ↓
	BAGALKOT 220kV TOTAL IPPs	0.00 🕴					VENKATESHWARA POWER	SADALGA 110kV	108.66	0.16 1	0.10 🖡
	SADASHIVA SUGARS	RAMPUR 110kV	111.33	0.161	0.13↓		GIRAGOAN	CHIKKODI 110kV	33.17	0.004	0.00 +
	KBJNNL	RAMPUR 110kV	10.94	0.31	0.01		KABBUR	CHIKKODI 110kV	33.17	0.00 🕴	0.00+
	GMR	RAMDURGA 110kV	0.00	0.00	0.00		DODDANAVAR WIND MILL	CHIKKODI 110kV	106.59	33.65 +	4.48 t
	KEDARNATH	BAGALKOT-NEERBUDIHAL	0.00	0.00 4			VISHWANATH SUGARS	HUKKERI 110kV	105.41	0.81 †	0.17 🕇
	ENERCON	KONNUR 110kV	0.00	0.00 4	0.00		RSR POWER(GAMESA)	BHOJ 110kV	0.00	0.00 🕴	0.00 🖡
	SHIVASAGAR SUGARS	SALAHALLI 110kV	109.72	0.101	0.21 🕴		SHIVASHAKTI SUGARS	ANKALI 110kV	111.01	0.19†	0.22↓
	BB WADI TOTAL IPPs	0.00									
	NANDI SAHAKARI SAKKARE KARKH	ASHFIRABUR 110kV	0.00	0.00	0.00	8	GADAG 220kV TOTAL IPPs	121.81			
	JAMAKHANDI SUGARS(Hirebadasala	9)TODALBAGI 110kV	113.75	0.35 t	0.10 †		SUZLON-1	DAMBAL 110kV	111.19	9.05↓	0.18 🕇
	KPR SUGARS	ALMEL 110kV	108.46	0.10↑	0.20 🕴		SUZLON-2	DAMBAL 110kV	111.19	9.24 🕴	0.22 †
	JAMAKHANDI SUGARS	ALMEL 110kV	108.46	0.09↑	0.34 🖡		ENERCON(Hirevadatti)	DAMBAL 110kV	111.19	14.02 🕴	0.86 †
	SRI BASAVESHWARA SUGARS	MALGHAN 110kV	0.00	0.00+	0.00 +		ENERCON-1(Bannikuppa)	BELLATTI 110kV	111.85	0.00 +	0.00 🖡
							ENERCON-2(Bannikuppa)	BELLATTI 110kV	111.85	23.05 +	1.97 1
							VICTORY GLASS WIND(Nagavi)	GADAG 110kV	31.74	0.08 t	1.34 1
	BELGAUM 220kV TOTAL IPPs	9.76					INDO WIND(Mallasandra)	GADAG 110kV	31.74	2.89↓	1.98 ↑
	GLOBAL ENERGY	MACHE 110kV	31.74	0.00+	0.00 🕴		TEJASWINI DEVELOPERS-1	GADAG 110kV	31.74	4.63 t	0.38 +
	SUZLON	KANABARGI LAYOUT 110k	33.90	9.69 1	0.97↓		TEJASWINI DEVELOPERS-2	GADAG 110kV	31.74	6.04 1	0.27 +

IPPs -HESCOM

	AL IPP INJECTION: 317					8					
5L NO	NAME OF IPP	KPTCL STN	VTG(kV)		REACTIVE	· C 0	The second s	KPTCL STN	VTG(kV)	ACTIVE	REACTIVE
	PIONEER(Bellatti)	GADAG 110kV	31.74	0.01 🕴	0.00	12	KUDUCHI 220kV TOTAL IPPs	0.00			
	KPCL WIND POWER(Kappath Gudda)	GADAG 110kV	31.74	0.82 †	2.20 🕴		UGAR SUGARS	UGAR KHUD 110kV	56.55	1.47 1	1.03 †
	WIND-1	GAJENDRAGAD110kV	32.71	6.74 1	1.39 🖡		ATHANI FARMERS SUGARS	AINAPUR 110	0.00	0.00	0.00
	WIND-2	GAJENDRAGAD110kV	32.71	6.49 †	1.32 🕴		SHIRUGUPPI SUGARS	KAGWAD110	65.72	0.22 1	0.00 +
	WIND-3	GAJENDRAGAD110kV	32.71	4.61 🕇	0.69 🖡						
	WIND-4	GAJENDRAGAD110kV	32.71	6.95 t	0.59 🖡	13	ML PURA 220kV TOTAL IPPs	1.19			
	VIJAYA NAGARA SUGARS	MUNDARGI 110kV	109.29	0.62 t	0.26 🖡		SRI PRABHULINGESHWARA	JAMAKHANDI -SHIROL	111.51	0.00	
	POINTEC	MUNDARGI 110kV	10.94	0.00 t	0.00 \$		GODAVARI SUGARS-1	ML PURA 220kV	109.85	0.75	0.41 🖡
	ODANAVAR	NARAGAL 110kV	11.01	1.02 🕇	0.10 🖡		GODAVARI SUGARS-2	ML PURA 220kV	109.85	0.00	0.00
	BPCL	SHIRAHATTI 110kV	111.73	24.25 🕴	4.28 t		INDIAN CANE POWER LTD	UTTUR 110kV	105.98	0.29 1	0.00 🖡
	MMCL	LAXMESHWARA 110kV	32.50	3.95 t	0.84 t		NIRANI SUGARS	Mahalingapura -Mudhol	109.85	20.01 🖡	
							BPCL	ITNAL 110	109.27	44.06 1	6.35 🕴
9	HATAPRABHA 220kV TOTAL IPPs	19.67									
	KOLVI SUGARS	GOKAK 110kV	0.00	0.00	0.00	14	RANEBENNUR 220kV TOTAL IPPS	67.43 🕴			
	SATISH SUGARS	P G HUNSYAL 110kV	105.37	0.00 🕴	0.00		SUZLON	BYADAGI 110kV	111.01	27.69	2.61 t
	GAMESA	KABBUR 110kV	108.84	19.45 ↓	3.17 🕇						
	GOKAK POWER & ENERGY	GHATAPRABHA 110kV				15	SOUDATTI 220kV TOTAL IPPs	80.53			
	SOUBHAGYALAXMI SUGARS	MAMADAPUA 110kV	107.57	0.12 🕇	0.00↓		ENERCON-1	SOUDATTI 110kV	111.49	33.99 🖡	3.17 t
							ENERCON-2	SOUDATTI 110kV	111.49	34.12 🕯	3.41 t
10	AVERI 220kV TOTAL IPPs	27.89 🖡					Tungabhadra Steel Producers Ltd-1	SOUDATTI 110kV	11.02	0.00 \$	0.00 1
	GM SUGARS	HAVERI-220	110.20	0.23 🖡	0.20 t		Tungabhadra Steel Producers Ltd-2	SOUDATTI 110kV	11.02	0.00 t	0.00 t
	SUZLON-1(Haveri-Guttal)	HAVERI -GUTTAL	111.33	70.47 🖡			RENUKA SUGARS	SOUDATTI-YARAGATTI	109.57	2.16 🖡	
							SUZLON	SOUDATTI 110kV	34.41	8.39 t	0.22 t
						16	VAJRAMATTI 220kV TOTAL IPPs	0.10			
11	NDI 220kV TOTAL IPPs	0.09					J K CEMENTS	VAJRAMATTI 220	0.53	0.00	0.00 \$
	INDIAN SUGARS	CHADCHAN 110	108.35	0.091	0.07 🕴		GEM SUGARS	KATARKI 110kV	108.02	0.10 🕇	0.11 🕴
	DSSS SUGARS	HIREBEVANUR 110	0.00	0.00 🕴	0.00 🕴		BILAGI SUAGRS 1	BILAGI 110kV	31.47	0.00 †	0.01 †
	KESARI GUJJARA	ATHARGA 110				•	BILAGI SUAGARS 2	BILAGI 110kV	31.47	0.10 🖡	0.02 +
	MANALI SUGARS	MALGHAN-110	112.19	0.05 t	0.00 \$		Rytara Sahakari sakkare Karkane	LOKAPURA 110kV	0.00	0.00	0.00
							DALMIA CEMENTS	LOKAPURA 110kV	0.00	0.00 \$	0.00

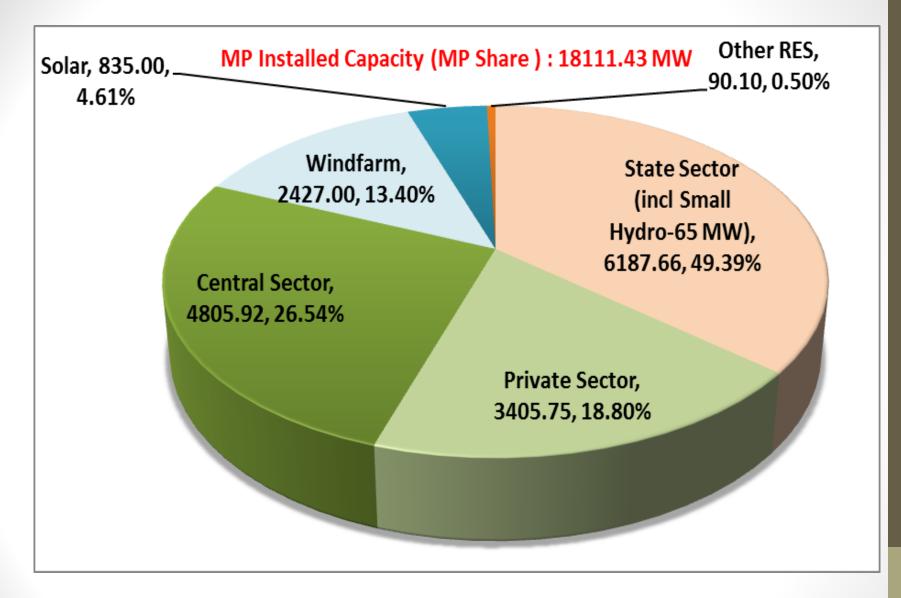
IPPS ALL ZONES

	BIOMASS	CO-GENERATION	MINI HYDRO	WIND	SOLAR	TOTAL (Including 220kV IPPs)
IPPS_BESCOM	0.14	1.02	13.70	555.73	42.02	613.58
IPPS_MESCOM	0.00	0.00	94.79	49.77		141.87
IPPS_CESC	0.00	2.95	118.88	101.51	1.38	233.18
IPPS_GESCOM	0.14	30.61	30.50	213.98	9.97	291.06
IPPS_HESCOM	0.00	10.49	0.00	1053.80	2.81	1065.82
TOTAL_IPPS	0.34	42.36	258.02	1979.36	58.49	2344.25

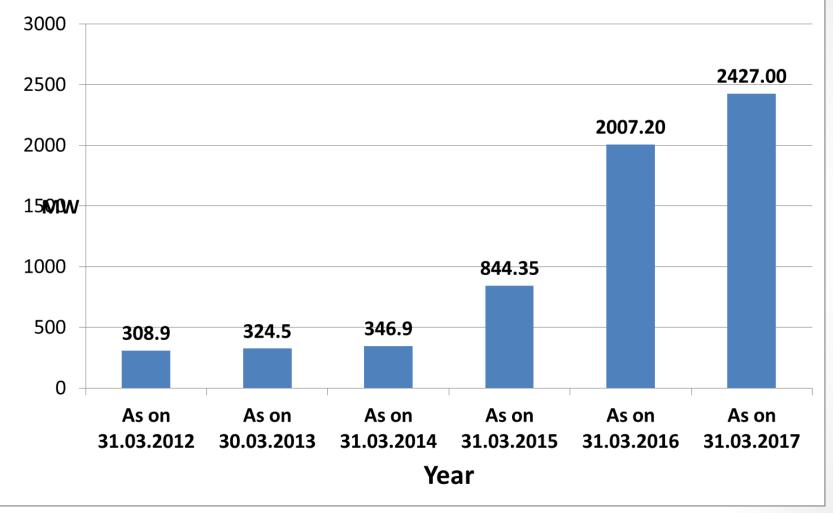
					ESC	COM		SE S	TAT	ION LO	DAC)			Total Ge Total Lo		6199 6127	MW MW	
BESCOM L	OAD34	163	UI: 1	76	S'PURA	207	120.7			MESCO	าM	LOAI):422	2	ML'PURA	226	29.6	1.2	29.4
STATIONS NAMES	VTG	LOAD	IPP	LOAD	SARJAPURA	216	32.0					UI	- 221		NARENDRA	220	39.5		
A'HALLI	213	50.3		LOND	SRS PEENYA T K HALLI	210 205	316.2	9.3	9.3	C MANGLORI	222	17.4			R'BENNUR	221	- 30.6	67.4	42.5
ANCHEPALYA	215	34.7	0.2	35.9	THALLAK	205	- 0.8	16.8	40.2	KADUR	221	- 2.0	42.5	41.3	SIRSI	228	5.7		
A STATION	211	85.8			V'THI VALLEY	199	107.6			KEMAR	223	42.2	36.1	78.2	SOUNDATTI	229	- 42.6	80.5	38.1
BEGUR	211	20.4			Y D G PLANT YELHANKA	63	0.0 119.9			KAVOOR	224	74.9	47.0	121.9	VAJRAMATTI	221	66.2	0.1	
BIDADI	204	49.6				208				MSEZ	227	1.3			SUPA	114	0.0	U.1	05.1
CHINTAMANI	226	65.6			Y'HALLI	212	188.8			PUTTUR	225	49.2	- 7.6	43.2		114	0.0		
CHITRADURGA	218	- 154.6	196.5	52.2	HAROHALLI	203	27.3 26.3			S'RAL KOPP		62.7	- 21.4	40.0	G'PRABHA	11	0.0		
DABUSPET	212	69.7		52.2	TATAGUNI C P R I	220 209	10.4			SHIMOGA	224	46.7	49.2	98.7	INDAL	225	7.1		
DAVANGERE	220	33.3	76.6	112.7	ITPL	203	7.8			LPH	110	0.2			LIS BALUTI	225	0.2		
D B PURA	215	56.2	,0.0	112.7	RAILWAYS	214	8.2			BHADRA	65 109	0.0 9.0			IPPs HESCOM			317.0	
EAST DIV COMP	210	93.3			ΤΟΥΟΤΑ	204	11.8			MGHE JOG MANI DAM	1109	9.0 0.1							
EPIP	210	105.7			IPPs/NCEP INTER ESCOM F	IOW		510.2 - 0.9					143.2		INTER ESCOM	FLOW		26.0	
G B'NUR	213	56.3			GESCO		D:605	UI:- 2	081	IPPs MESCO					CESC)AD:9	07 UI: 135		
HEBBAL	209	122.8								INTER ESCO	OM FLC	w	- 16.3				07	1 :10	132
HIRIYUR	222	- 100.1	129.1	39.6	ALIPUR	217	44.6	48.0	95.0	HESCO	M	LOAD:			ARASIKERE	220	25.1		
HONNALI	222	2.7	12.8		HALBURGA	227	36.8	2.6	43.6	I ILSOC	2151	UI : 9	37		C R NAGAR	207	93.5	3.0	105.7
HOODY	211	236.3			HUMNABAD	223	27.9	2.8	30.9	ATHANI	221	35.8	6.4	45.2	C.R.PATNA	218	25.5		
HAL	211	155.2			ITTAGI	216	- 36.9	104.5	64.5	AMBEWADI	229	11.4	0.0	12.2	HASSAN H'GALLI	214 211	- 35.1 103.5	104.4	72.0
HOSKOTE	210	82.6			K'NI STEELS	212	32.5			BAGALKOT	224	34.9	0.0	35.9	HN PURA	217	26.7	4.2	
HSR LAYOUT	205	226.0			KAPNOOR	228	48.9	- 0.2	48.8	B BWADI	225	39.4	0.0	41.0	K R PET	212	80.3	3.9	80.7
KANAKAPURA	203	24.9	13.7	38.1	KUSHTAGI				45.4						KADAKOLA	209	96.5	3.1	99.8
KB'HALLI	214	28.5				229	60.9	- 8.8		BELGAUM	225	78.0	9.4	86.2	K'SHL NAGARA	214	49.1	5.6	54.6
KHODAYS	206	13.0	0.5	111.1	LINGAPUR	214	0.0	11.2	26.3	BIDNAL	228	16.7	3.9	19.8	M'HALLI	207	37.2	22.6	68.6
KOLAR	218	109.9	0.5	111.1	L'SUGUR	218	- 74.1	100.7	26.7	BIJAPUR	220	34.5			T K HALLI	205	46.6	23.3	73.4
KIADB(D B PURA)	215	36.3		51.2	MUNIRABAD	0	15.0			CHIKKODI	225	- 0.3		38.6	TUBINAKERE	209	70.1	5.2	80.9
MADHUGIRI MALUR	212 216	42.2 73.5	10.1 1.4	74.5	RAICHUR	225	55.9	0.0	54.3	GADAG	217	- 144.0	121.8		VAJAMANGLA	209	51.6	17.2	69.7
	197		1.4	74.3	SEDAM	225	10.2	0.7	20.2	G'PRABHA	225	58.9		74.6	SHIMSHA	65	7.8	17.2	0
NAGANATHPURA		96.0					18.3			HAVERI	224	8.7	25.8	31.6					
NEELGUNDA	219	- 36.0	20.9	- 14.9	SHAHBAD	224	28.0	0.0	29.5	HUBLI	220	41.0			S SAMUDRA	66	41.4		
NIMHANS	210	48.6			SHAHPUR	225	38.6	2.2	40.7	INDI	220	30.0	0.1	30.1	IPPs CESC			182.4	
NITTUR	218	15.8			SINDHANOOR	0	46.3	0.0	47.3	KARWAR	226	32.6	12.7	45.4	INTER ESCOM	FLOW		- 3.3	
NRS 220	220	74.9			IPPs GESCOM			277.6		KUDACHI	230	18.5	0.0	16.3	JINDAL-GUTTUR 400 kV - 8			- 8.69	
SOMANAHALLI	203	160.7	0.7	161.8	INTER ESCOM	FLOW		- 16.3		MKHUBLI	226	36.8	0.0	37.3	NELAMANGAL	4-GOO	TY 400 k)	/ -	499.90

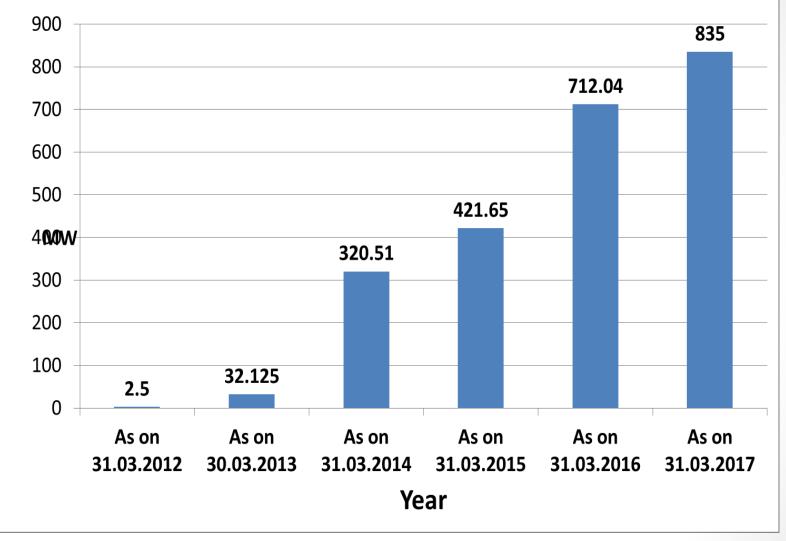
The Way forward - REMC

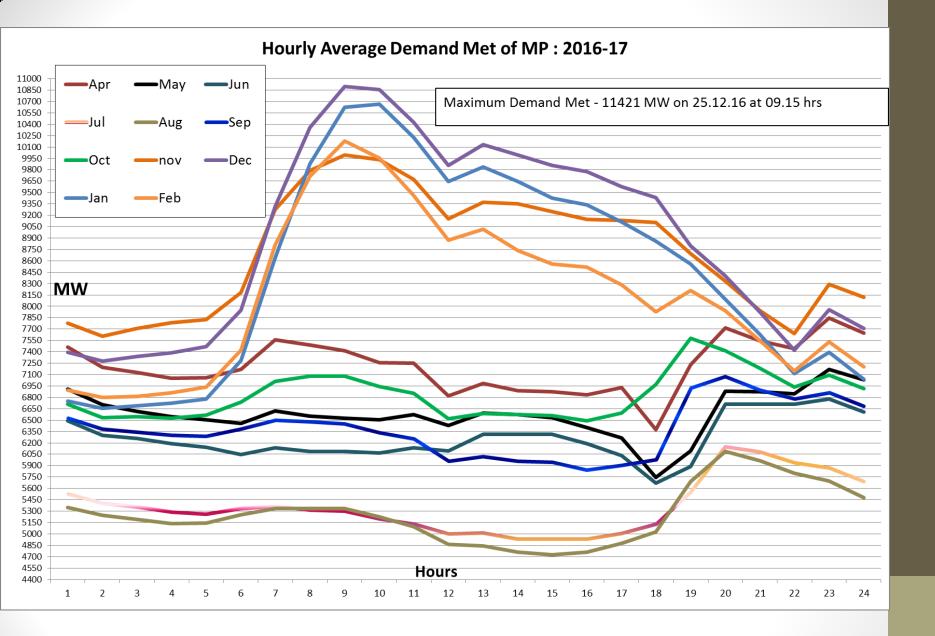
- * R.E.M.C will be set up adjacent to the SLDC
- * The REMC system will be integrated to the KPTCL SCADA system to facilitate flow of real time data from KPTCL system to REMC system and flow of day ahead schedules to the KPTCL system from the REMC system.
- * Communication between the two system will be on wired communication as the two centres will be adjacent to each other.
- * Bid evaluation is in progress for REMC system (PGCIL)


The Way forward – KERC regulations

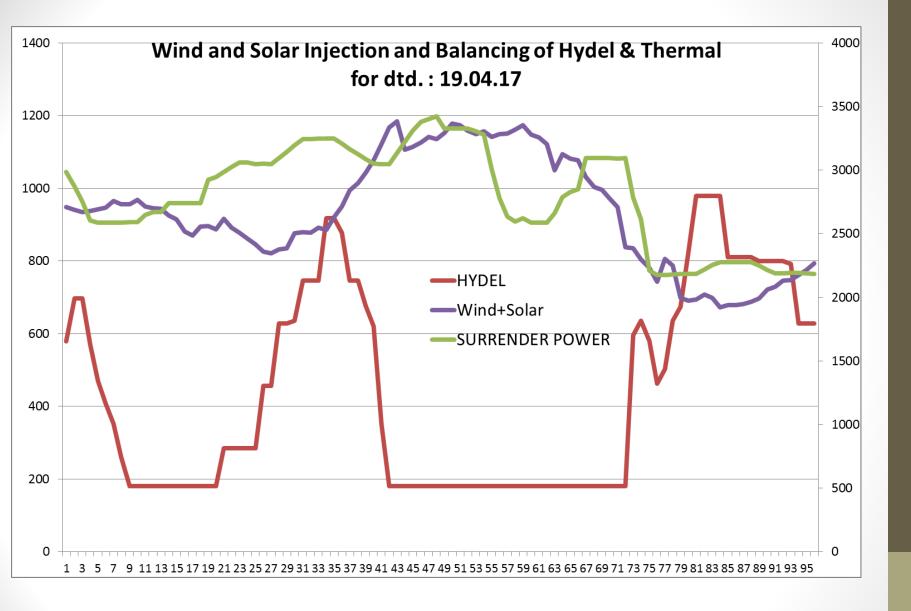
- * Steps taken for implementation of the KERC regulations for wind and solar
- * Real time data from SCADA made available
- * Aggregators are providing schedules as a mock exercise for about 55% of the pooling stations.
- * About 90% Generators have provided static data of the turbines.
- * The Generators have been directed to provide real time data at turbine level to SLDC. Further discussions will be held to address this aspect.


Tank You


STATE LOAD DESPATCH CENTRE MPPTCL, JABALPUR

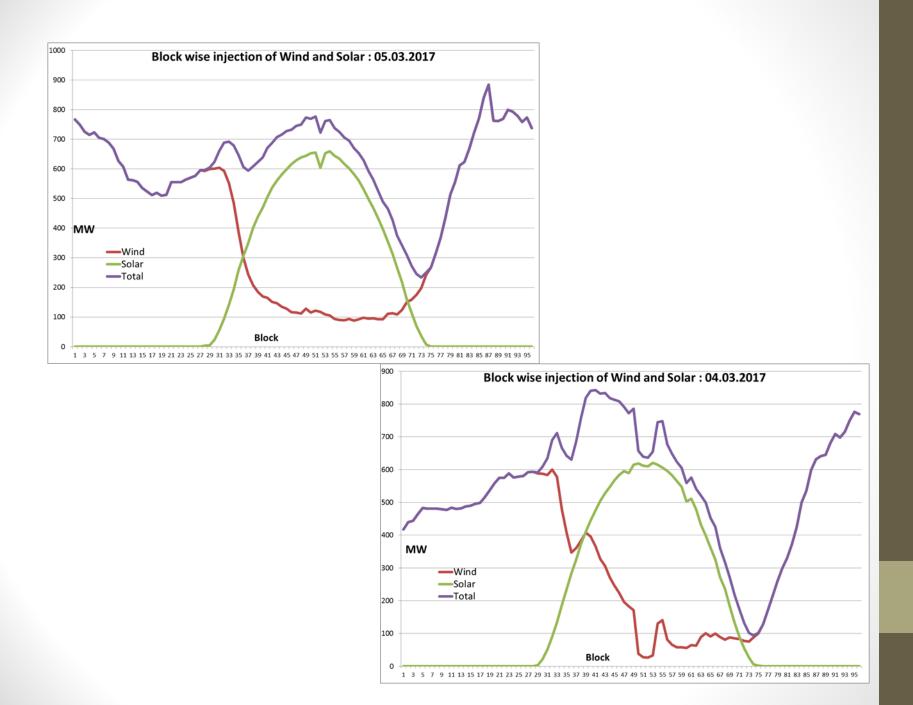


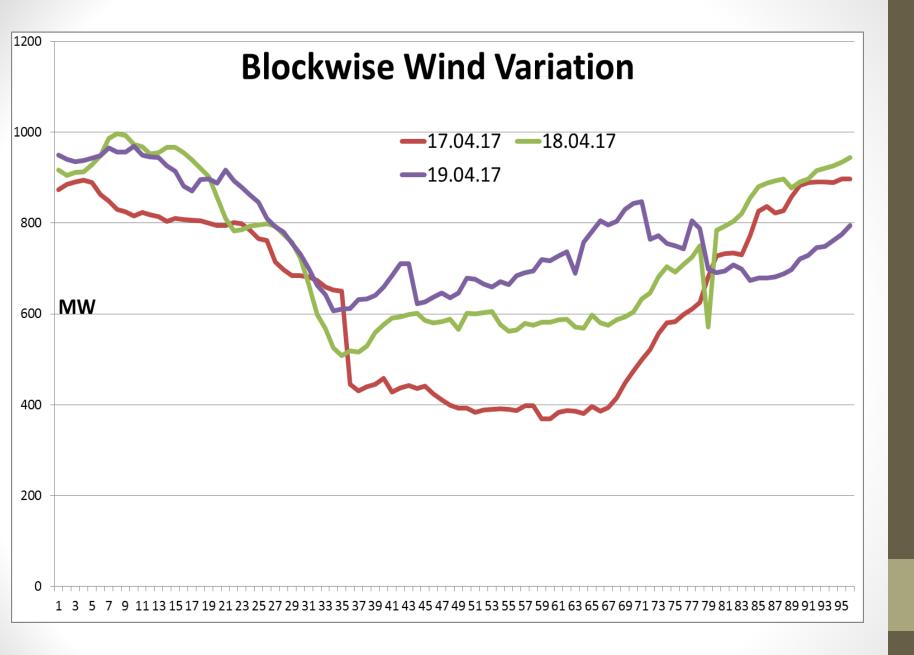
INSTALLED CAPACITY OF WIND IN MP


INSTALLED CAPACITY OF SOLAR IN MP

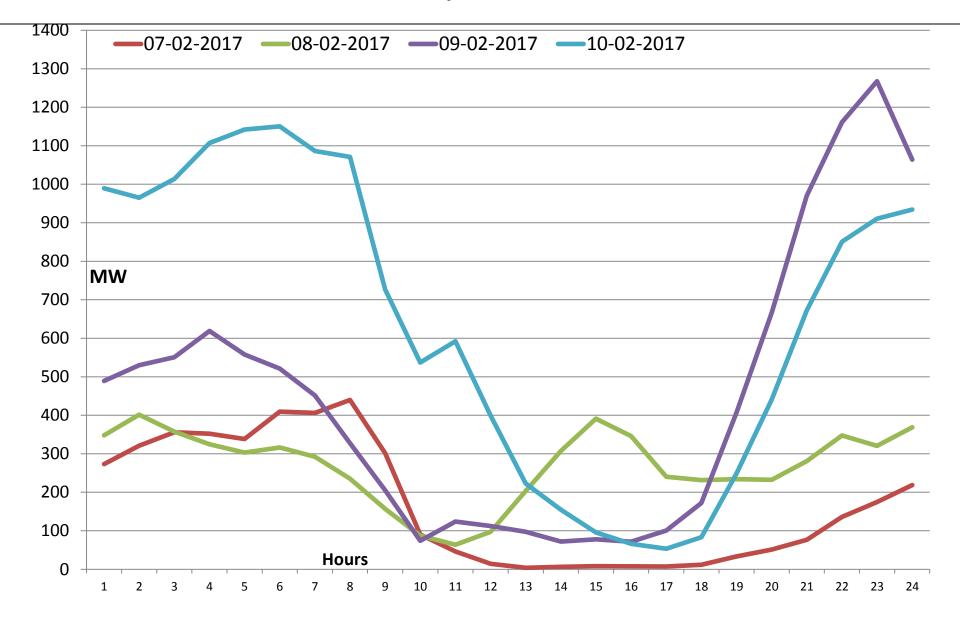
Wind and Solar in MP

- The Developer / Generator submits the day-ahead forecasting of their generator at pooling stations to SLDC
- SLDC issues the injection schedule to each Developer / Generator on dayahead basis based on their forecasting.
- In MP except SECI selling power to other states, no other RE Generators are doing real time forecasting in absence of regulatory framework for imbalance settlement
- New Generators are giving commissioning permission only after providing telemetry and compliance of all regulatory requirements.
- The guidelines to be followed by the RE generators for Metering, AMR, Telemetry etc. have been made available on MP SLDC website
- MPERC has notified draft Regulation on "Forecasting, Scheduling and Deviation Settlement of Wind and Solar Generators in the State level" which also addresses the issue of RE Generators selling power to other states through Open Access and yet to be notified.
- The Govt. of India is establishing "Renewable Energy Management Centres" (REMC) in National and Regional Load despatch centres as well as State Load Despatch Centres of RE rich states including MP. The REMC shall comprise of SCADA, Forecasting tool, RE Scheduling tool, Control reserve monitoring tool and WAMS for RE.


Status of Green Energy Corridor Project (Phase-I) Madhya Pradesh RENEWABLE ENERGY POWER EVACUATION WORKS


- To evacuate power from anticipated RE capacity addition of about 5847MW in next five years, MPPTCL has conducted system studies & identified required transmission system strengthening and interconnection works for upcoming RE projects.
- Estimated Cost of works proposed for RE Projects in MP
 - (A) Transmission System Strengthening Works :Rs.3575 Crore(Phase I: Rs 2100 Crore + Phase II: Rs 1475 Crore)
 - (B) Interconnection works :Rs.1125 Crore Total Estimated Cost (A+B) :Rs.4700 Crore
- Phase-I Transmission System Strengthening Works amounting to Rs. 2100 Crore are proposed to be completed within 3 year.

GREEN ENERGY CORRIDOR SCHEME (PHASE-I) (ANTICIPATED COMPLETION YEAR 2018-2019)


• Loan No.	: 201366483
 Total Project Cost 	: Rs. 2100 Crore (Revised 2027 Crore)
 Grant from NCEF (40%) 	: Rs. 840 Crore
• KFW Loan Component (40%)	: Rs. 840 Crore (i.e. EUR 124.0 million)
 GoMP Share (20%) 	: Rs. 420 Crore

Sl.No.	Particulars	Nos./ Ckt. Km
1	400kV New Substations (Mandsaur, Sagar, Ujjain)	3 Nos.
2	400kV Line	690 Ckt. Km
3	400kV Reactors	3 Nos.
4	220kV New Substations (Sendhwa,Jaora,Gudgaon,Kanwan,Ratangarh, Susner,Sailana) (220kV S/s Suwasara excluded)	7 Nos.
5	220kV Line	1164 Ckt. Km
6	132kV Line	1128 Ckt. Km
7	132/33kV Addl. Transformer (Nalkheda, Vijaypur)	2 Nos.

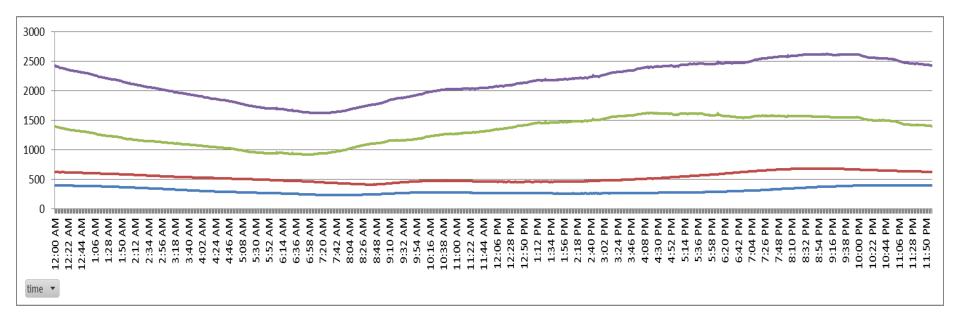
Hourly Wind Variation

Thank You !

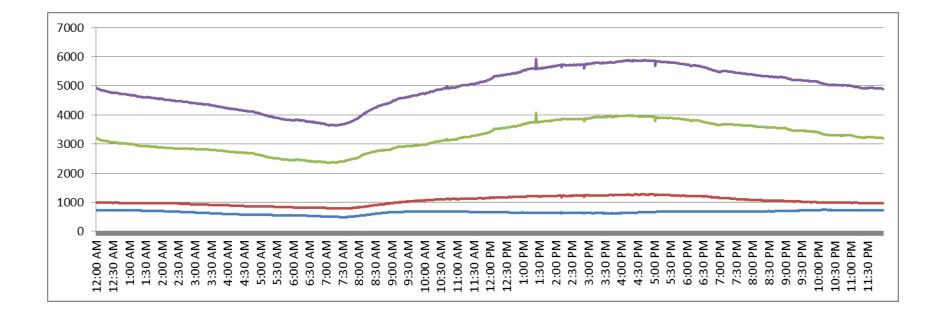
Technical Committee constituted by CEA for study of optimal location of various types of balancing energy resources/energy storage devices to facilitate grid integration of RES

> SRPC secretariat Chennai 09.05.2017

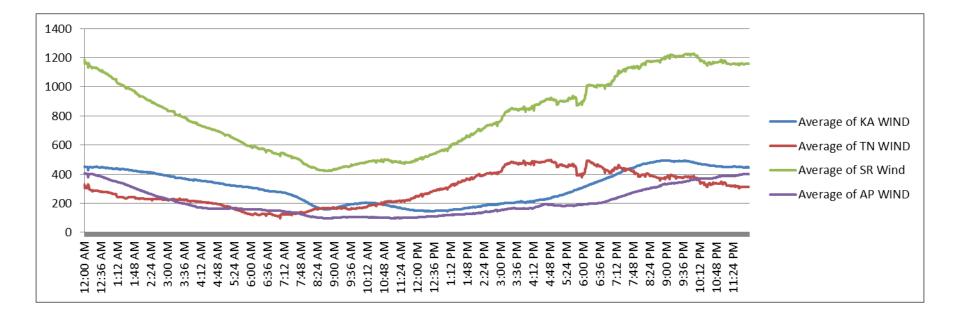
Ramp Rates of Wind


State	Generation Peak	1 Minute	5 Minute	15 Minute	Range
Andhra Pradesh	1300 MW	-20 to 10	-30 to 20	-60 to 40	95% W<500 90%W>500
Karnataka	2000 MW	-20 to 10	-30 to 20	-50 to 50	90% W<1000 80%W>1000
Tamil Nadu	4500 MW	-100 to 50	100 to 50	-150 to 100	80% W<1000 75%W>1000
Southern Region	7500 MW	-100 to 50	100 to 50	-200 to 150	80% W<1500 70%W>1500

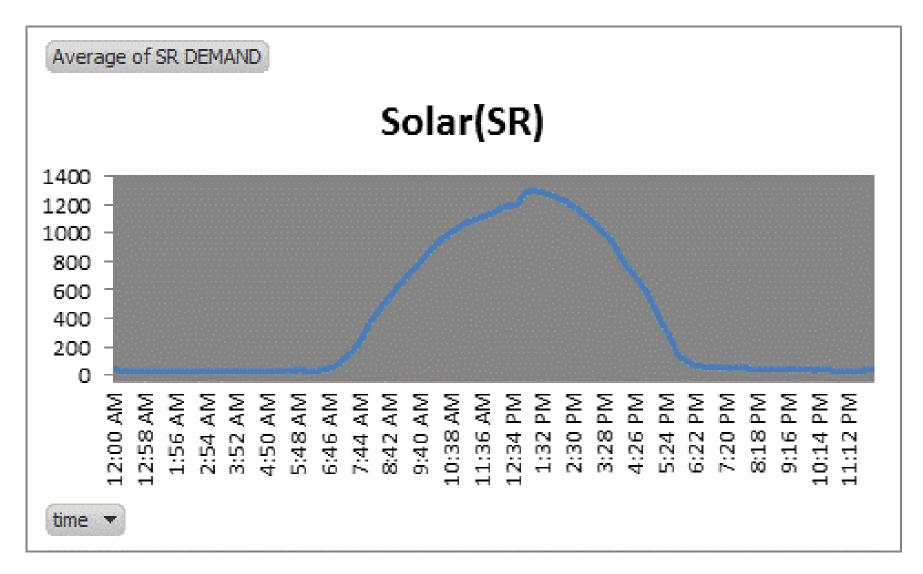
Total Wind Variation is seen between -400 to +350 MW

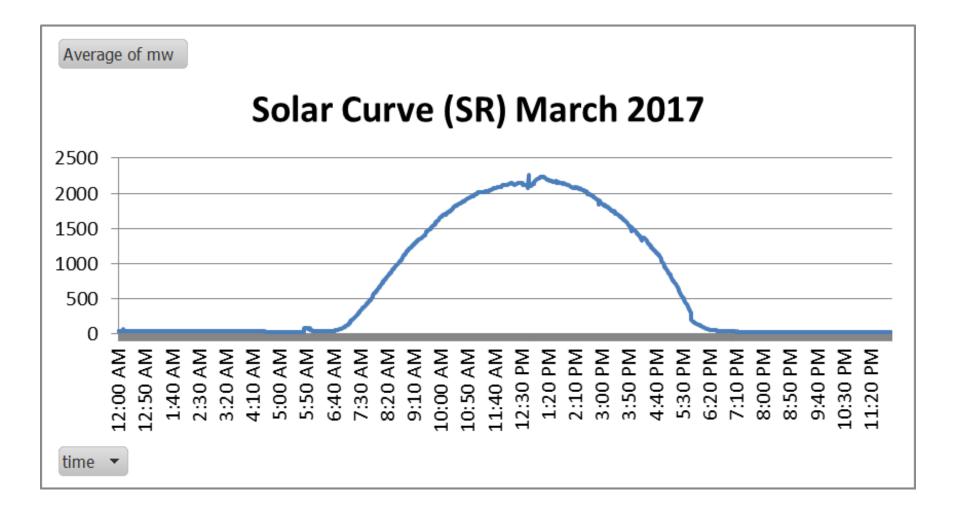

Ramp Rate TN Vs SR Wind

	15 Min	1 Hr	6 Hr
-100 to + 50	TN Var> SR Var		
-200 to 100		TN Var> SR Var	
-450 to 350			TN Var> SR Var

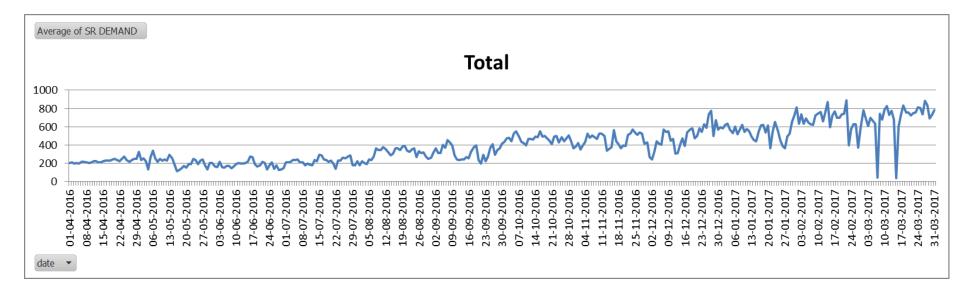

Wind Curve

August 2016 Wind Curve

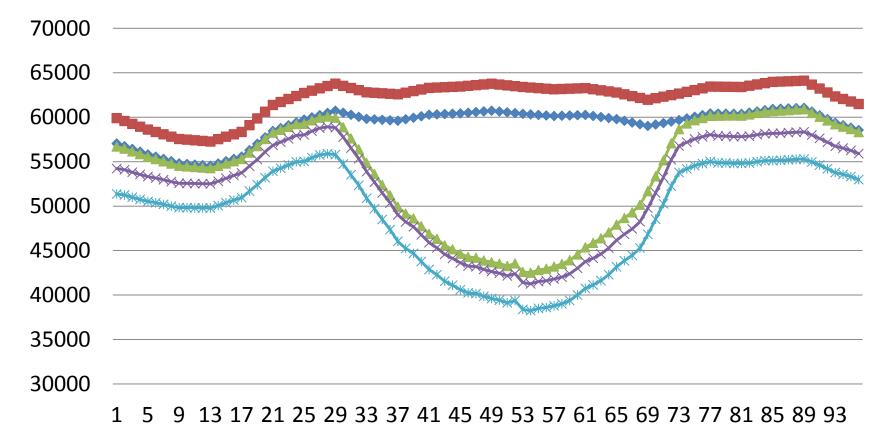

March 2017 Wind Curve



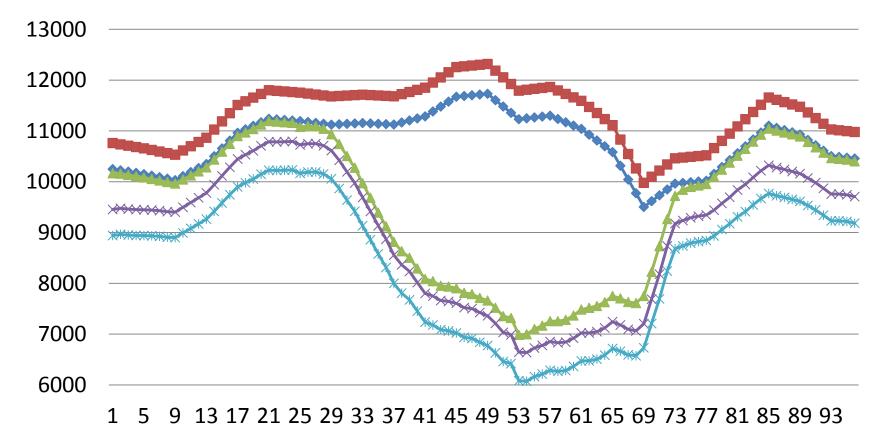
Ramp Rate Solar (SR)


	15 Min	1 Hr	6 Hr
-100 to 100	85%	65%	50%
-300 to 300	98%	85%	70%
-650 to 650		98%	90%
-850 to 950			98%

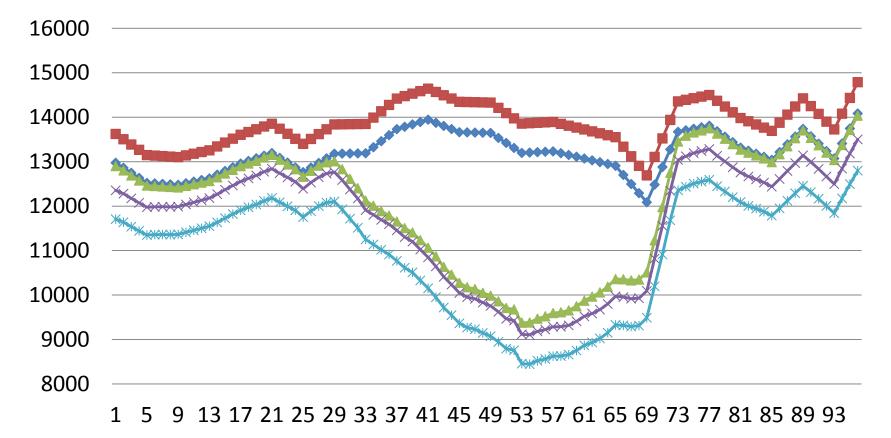
Solar Curve


Solar Average Gen Day Wise

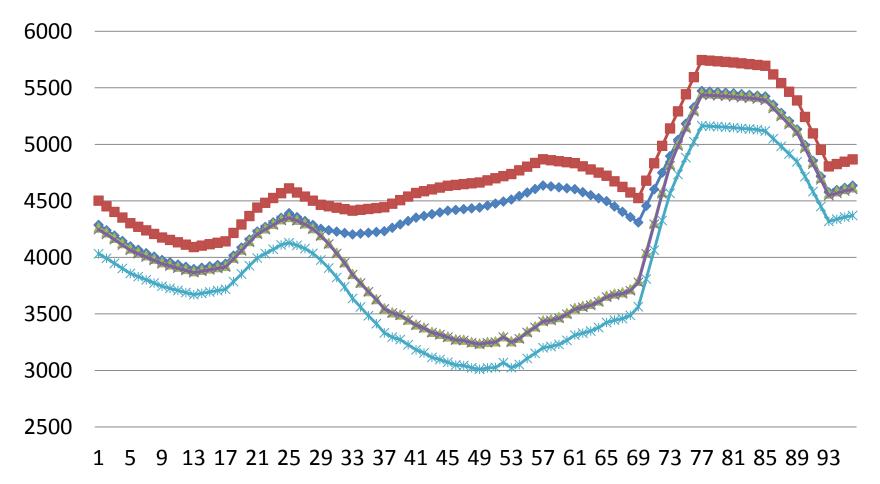
Deviation


	Range	97%
AP	-700 to +700	-300 to +300
КА	-1200 to 600	-400 to +400
TS	-700 to 500	-300 to +200
TN	-1200 to 800	-500 to +500
SR(Sum)	-2100 to 1400	-800 t0 +800

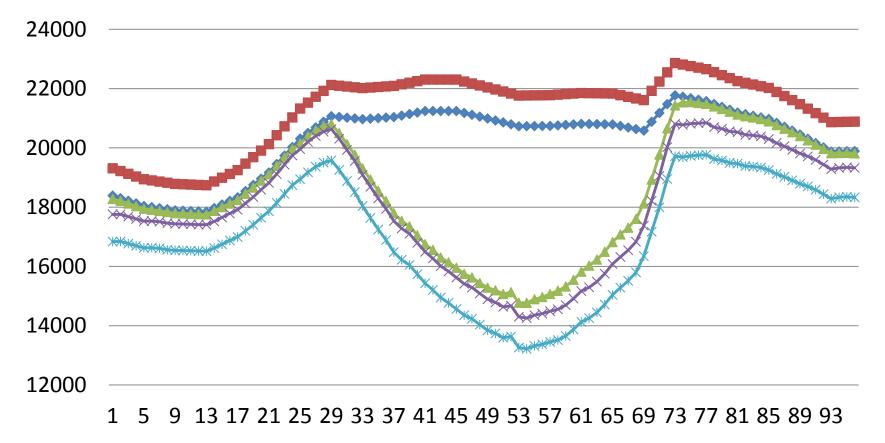
Southern Region Peak 2021-22


 $\rightarrow D$ $\rightarrow 1.05D$ $\rightarrow D-S$ $\rightarrow D-S-W$ $\rightarrow 0.95D-W-S$

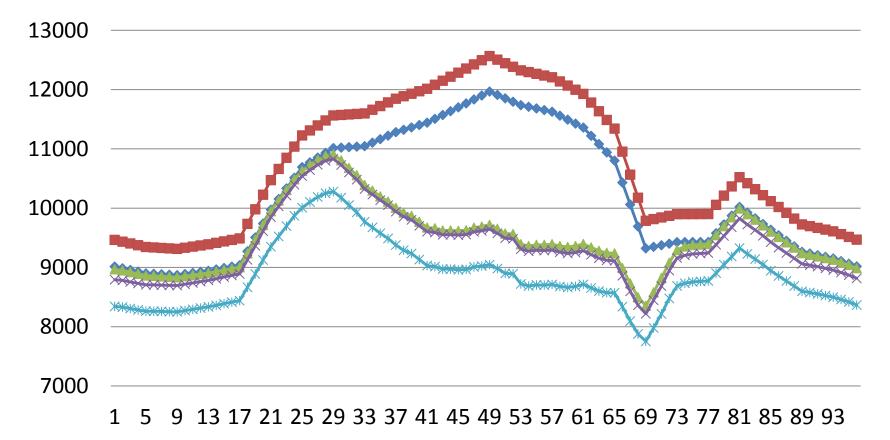
Andhra Pradesh Peak 2021-22


→ D → 1.05D → D-S → D-S-W → 0.95D-S-W

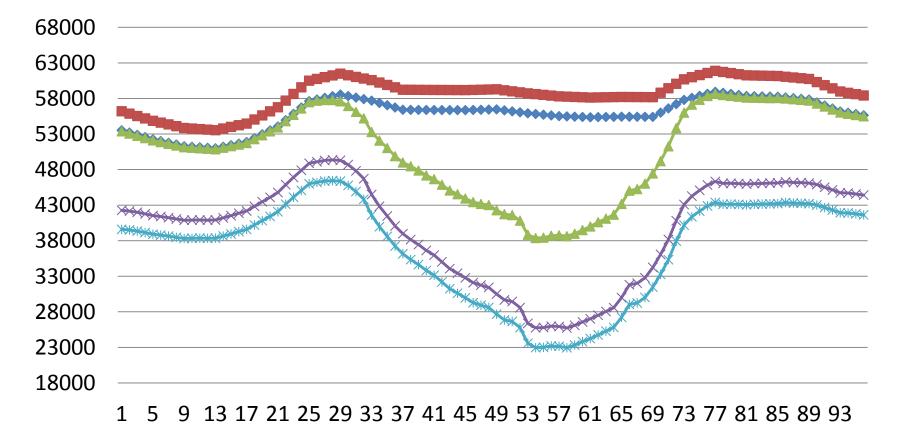
Karnataka Peak 2021-22


→ D → 1.05D → D-S → D-S-W → 0.95D-S-W

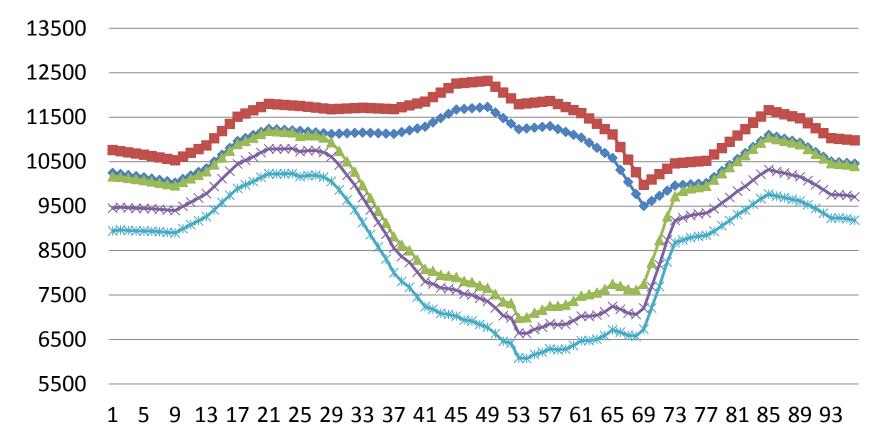
Kerala Peak 2021-22


→ D → 1.05D → D-S → D-S-W → 0.95D-S-W

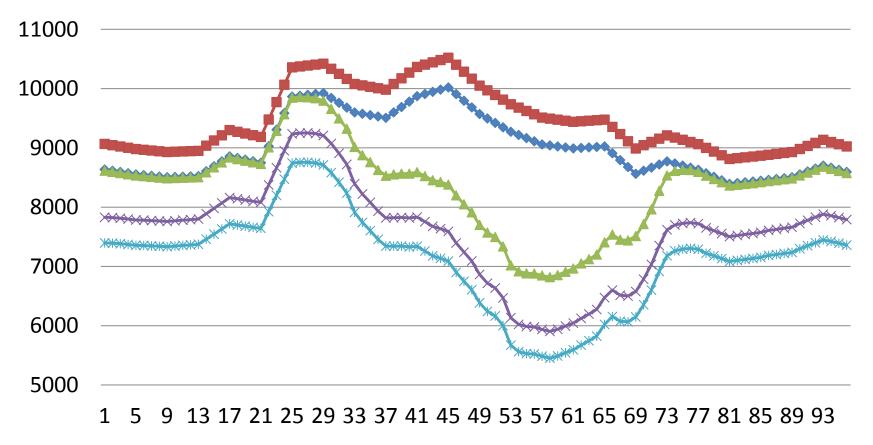
Tamil Nadu Peak 2021-22


 $\rightarrow D$ $\rightarrow 1.05D$ $\rightarrow D-S$ $\rightarrow D-S-W$ $\rightarrow 0.95D-S-W$

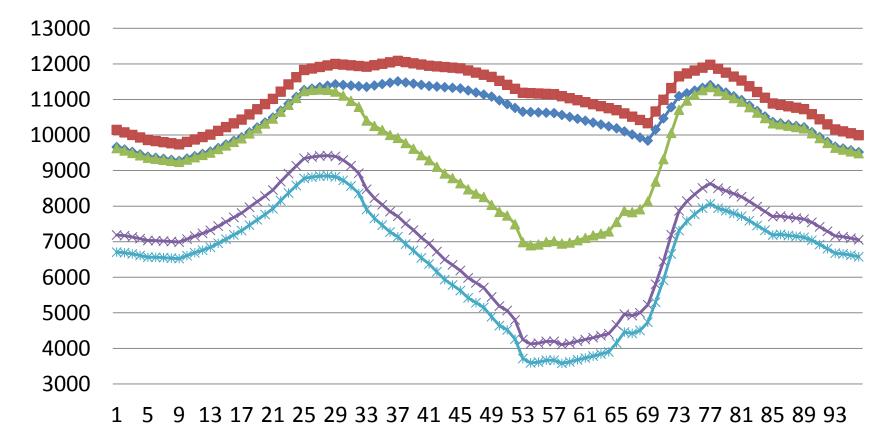
Telangana Peak 2021-22


→ D → 1.05D → D-S → D-S-W → 0.95D-S-W

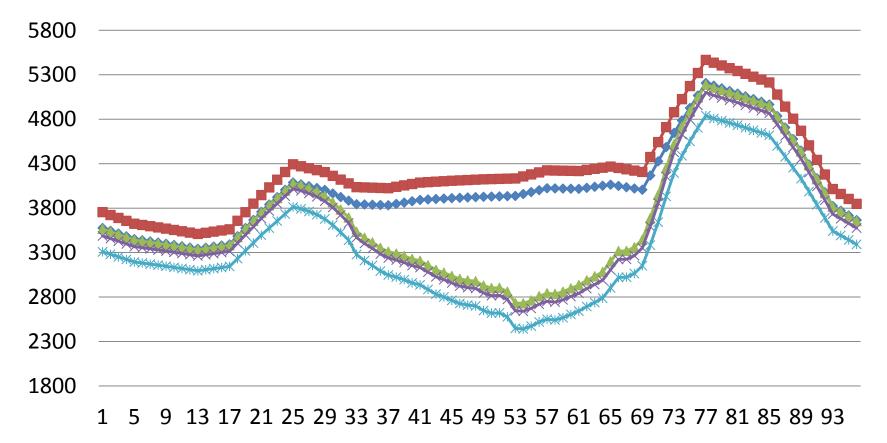
Southern Region Aug 2021-22


 $\rightarrow D$ $\rightarrow 1.05D$ $\rightarrow D-S$ $\rightarrow D-S-W$ $\rightarrow 0.95D-S-W$

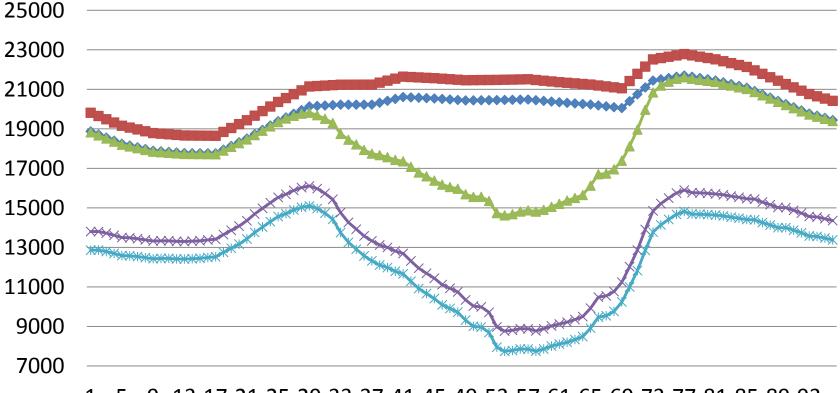
Andhra Pradesh Aug 2021-22


→D →1.05D →D-S →D-S-W →0.95D-S-W

Telangana Aug 2021-22


→ D → 1.05D → D-S → D-S-W → 0.95D-S-W

Karnataka Aug 2021-22


→ D → 1.05D → D-S → D-S-W → 0.95D-S-W

Kerala Aug 2021-22

→ D → 1.05D → D-S → D-S-W → 0.95D-S-W

Tamil Nadu Aug 2021-22

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93

 $\rightarrow D$ $\rightarrow 1.05D$ $\rightarrow D-S$ $\rightarrow D-S-W$ $\rightarrow 0.95D-S-W$

Ramp/Total Flexibility Requirement for peak 2021-22

	Ramp Up r	equirement	t	Ramp Dow	n requirem	nent	Max-Min
	15 min	1 hour	6 hour	15 min	1 hour	6 hour	
			Peak 20)21-22			
AP	547	1510	3303	-337	-859	-3974	4157
TS	261	725	2018	-245	-694	-1558	2611
KAR	768	2192	4137	-301	-677	-3647	4397
KER	263	763	2140	-132	-396	-1119	2206
TN	955	2603	6504	-467	-1261	-6314	6589
SR	1977	5413	16626	-1455	-3845	-17395	17656

Ramp/Total Flexibility Requirement for August 2021-22

	Ramp Up	requiremen	t	Ramp Dov	vn requiren	nent	Max-Min
	15 min	1 hour	6 hour	15 min	1 hour	6 hour	
			Peak 2	021-22			
AP	538	1389	4406	-522	-1177	-5085	5548
TS	315	829	1661	-331	-677	-3041	3347
KAR	739	2016	4348	-547	-928	-5132	5310
KER	291	812	2392	-161	-444	-1230	2461
TN	1025	2775	6946	-742	-1514	-7224	7341
SR	2618	6927	20163	-2217	-5208	-22811	23630

(%Ramp & Total Flexibility /Max. Availability)for Peak 2021-22

	Ramp Up	requiremen	t	Ramp Dov	vn requiren	nent	Max-Min
	15 min	1 hour	6 hour	15 min	1 hour	6 hour	
			Peak 2	021-22			
AP	5	14	31	-5	-11	-47	39
TS	2	7	19	-2	-6	-14	24
KAR	6	16	31	-2	-5	-27	33
KER	5	14	39	-2	-7	-21	41
TN	5	12	31	-2	-6	-30	32
SR	3	9	28	-2	-7	-30	30

(%Ramp & Total Flexibility /Max. Availability)for August 2021-22

	Ramp Up I	requiremen	t	Ramp Dov	vn requiren	nent	Max-Min
	15 min	1 hour	6 hour	15 min	1 hour	6 hour	
			Peak 2	021-22			
AP	7	18	57	-7	-15	-62	68
TS	3	9	18	-4	-7	-33	36
KAR	8	21	46	-6	-10	-54	56
KER	6	16	47	-3	-9	-24	48
TN	6	17	43	-5	-9	-45	46
SR	5	14	41	-4	-11	-46	48

Plan the Availability

Plan Max Availability & Ramp up requirements

- Costliest generators need to be partially loaded (upto technical minimum)
- Ramp up rates of each generator would determine the number of units required on bar to achieve the demand ramp rate
- Sudden and short duration ramp could be sourced by balancing energy sources (despatching gas/hydro units) /energy storage devices /purchase from market /pumps (in generation mode)
- Solar ramping down and load pick up

Plan the Availability

Plan Min Availability & Ramp down requirements

- Margins to kept in cheaper generators (Max technical minimum)
- Ramp down rates of each generator would determine the number of units required on bar to achieve the demand ramp rate
- Sudden and short duration ramp down could be by not taking power from market for few blocks / Demand response (if possible) /Pump operation
- Solar ramping up /load fall

Additional Margins which may be required as per DSM

Range	Additional Reserve required	Backing down Reserve required					
AP							
100 %	1080	1116					
95.45% variations (2sigma)	316	331					
90 %	252	249					
	TS						
100 %	659	1930					
95.45% variations (2sigma)	254	281					
90 %	203	217					
	KAR						
100 %	916	1618					
95.45% variations (2sigma)	376	498					
90 %	315	350					

Additional Margins which may be required as per DSM

Range of deviations	Additional Reserve required	Backing down Reserve required
	KER	
100 %	474	319
95.45% variations (2sigma)	174	72
90 %	154	55
	TN	
100 %	1090	1484
95.45% variations (2sigma)	405	619
90 %	314	502

Availability with Spinning Reserve

Availability with Spinning Reserve

- It would be under despatch of SLDC
- Quantum equal to largest unit size in the Control Area
- Margin could be kept in units with higher variable cost
- Would be used by SLDC during contingency, sudden fall in RE, sudden rise in demand, unit tripping, high OD etc
- Utilisation of balancing resources/energy storage devices
- Ancillary Market
- Spinning Reserves also to be restored by normal scheduling

Fall in Demand

Fall in Demand beyond margins available

- Sale through contingency market
- Trading mechanism among Regional states
- Mechanism to use pumps located in other states
- Go for RSD
- Market for Demand response/generation backing down

AP– Undispatched/Partial dispatched generators

Name	IC in MW	fuel	Dispatch	Reasons for Low Dispatch
Private Sector				
Jegrupadu I	216.82	Gas	Being dispatched requirement	l as per
Jegrupadu II	220	Gas		No Gas
Spectrum	208.31	Gas	APERC – No dispatch	
Lanco Kondapalli	351.49		APERC – No dispatch	
Reliance BSES	220	Gas		No gas
GMR Vemagiri	370	Gas		
Gowthami	464	Gas		No Gas
Konaseema	444.08	Gas		No Gas

AP– Undispatched/Partial dispatched generators

No Gas availability

Few stations had run under PSDF scheme

Evacuation Issues

AP & TS both having PPA

Tamil Nadu – Undispatched/partial dispatched generators

Name	IC in MW	fuel	Dispatch	Reasons for Low Dispatch
State Sector				
Basin Bridge	120	Naptha	Peaking station – Rarely used	Cost is very high Naptha and open cycle
Kovil Kalappal	107.88	Gas	200 MW out	Gas being
Valathur Stage -I	94	Gas	of 400 MW	supplied around 40%
Valathur Stage -II	92.2	Gas		
Kuttalam	101	Gas		

Tamil Nadu – Undispatched/Partial dispatched generators

Name	IC in MW	fuel	Dispatch	Reasons for Low Dispatch
Private Sector				
GMR Vasavi	196		PPA expired	
Samalpatty	105.66		PPA expired	Dismantled
Madurai PCL	105.66	LSHS	PPA expired	Costly
PP Nallur	330.5	Naptha		FSA under dispute, costly
Lanco ABAN	113.21	Gas		Gas being
Pioneer	52.8	Gas		supplied around 50%

Kerala/ISTS – Undispatched/Partial dispatched generators

Name	IC in MW	fuel	Dispatch	Reasons for Low Dispatch
Kerala State Sect	or			
Kayamkulam - NTPC	359.58	Naptha		Low on merit order
BSES	157		PPA expired	
Private Sector				
Lanco	1108	Gas		No Gas
Other generators in AP ready for commissioning	7000-8000 (reported)			No Gas

Reserves

Need for Market Based Reserves

Availability of Fuel

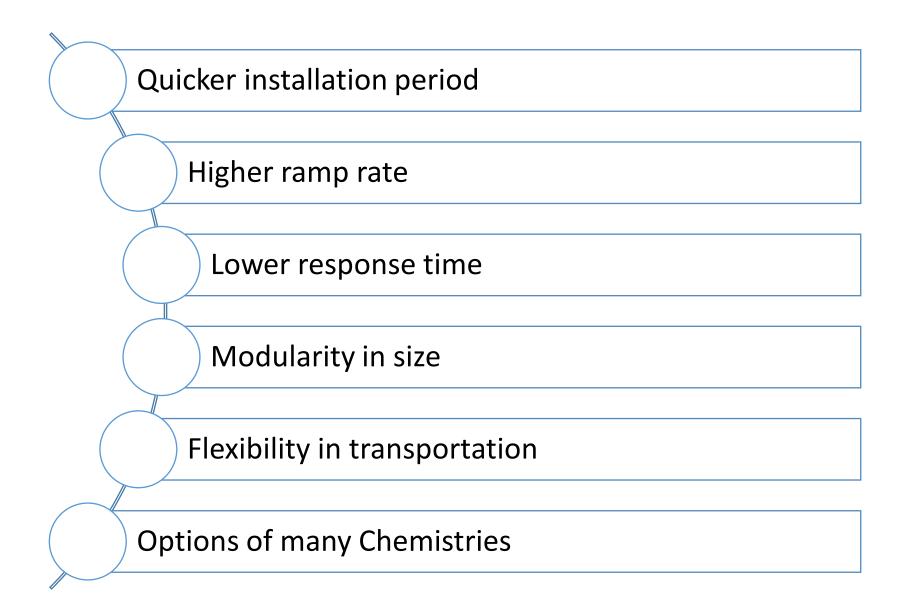
Mechanism to deploy these reserves – payment security mechanism – CERC/SERC

THANK YOU

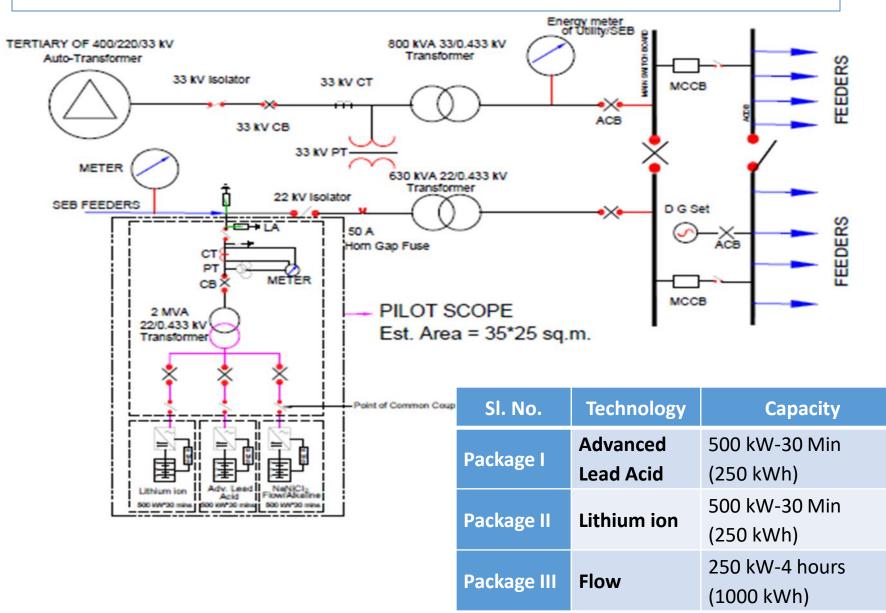
Battery Energy Storage System in Puducherry

Power Grid Corporation of India Limited

Drivers for Pilot Project on Energy Storage

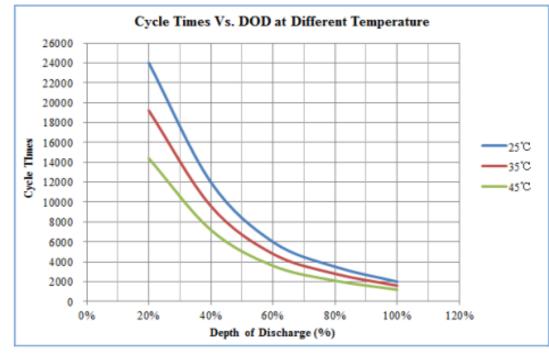

Balancing support needed for high Degree of Renewable Penetration (175 GW) by 2022

Very less existing capacity of Grid scale energy storage in the form of Pumped Hydro storage


High gestation period for Pumped hydro storage

No experience of grid scale energy storage apart from Pumped Hydro

Why Battery Energy Storage Pilot?


Size of the Pilot Project

Technical Specifications

Parameters	Li-ion Battery	Advanced lead Acid Battery	Flow Battery
Charging rate	3 hrs. from rated DoD to Full Capacity	3 hrs. from rated DoD to full capacity	5 hrs. from rated DoD to full capacity
DC-DC Round- trip efficiency	>90%	>80%	>75%
Service Life	10 years	10 years	10 years
Life-cycle	4000 cycles (900 MWh)	3000 cycles (675 MWh)	3000 cycles (2700 MWh)

Lithium Ion Cycle Life

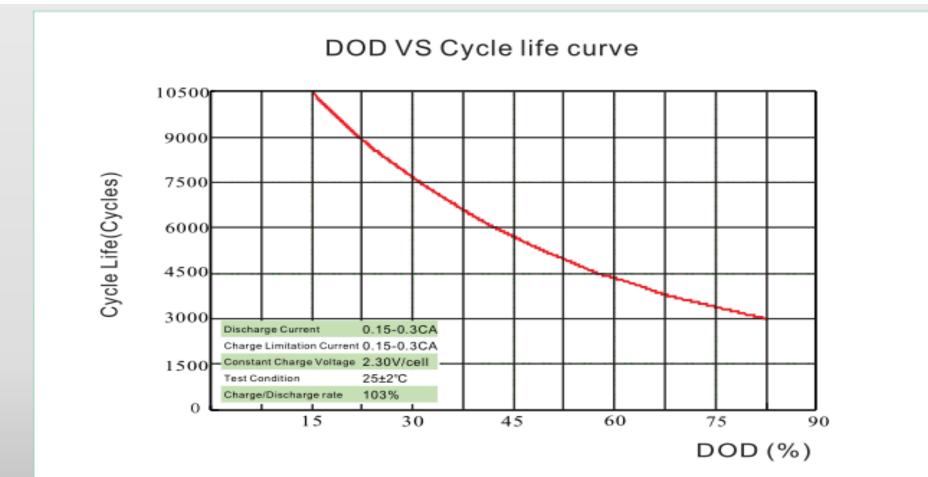

Graph 1 - Cycle life vs. DOD of NLC Series with Ideal Charge Mode

Table 1 Data of Cycle Number

I	Temp.	Depth of Discharge (%)				
	(°C)	100%	80%	60%	40%	20%
	25	2000	3500	6000	12000	24000
	35	1600	2800	4800	9600	19200
	45	1200	2100	3600	7200	14400

- P -	-		
		5 .	•
	•		
-			
	-		

Advanced Lead Acid Cycle Life

Note: Application on single cell.

System Configuration: Adv. Lead Acid

Internal Chemistry: Cathode-PbO2, Anode-(Lead+Carbon), Electrolyte-H2SO4

Details of Each Cell: 2V, 600 Ah

Configuration: Two strings are connected in parallel, each string comprises of 300 cells connected in series (total 600 cells)

PCS Efficiency: 96%

Total Capacity of Battery: 691.2 kWh (useful Capacity at 2C was found 384 kWh)

Rated DoD: 65.1%

System Configuration: Lithium Ion

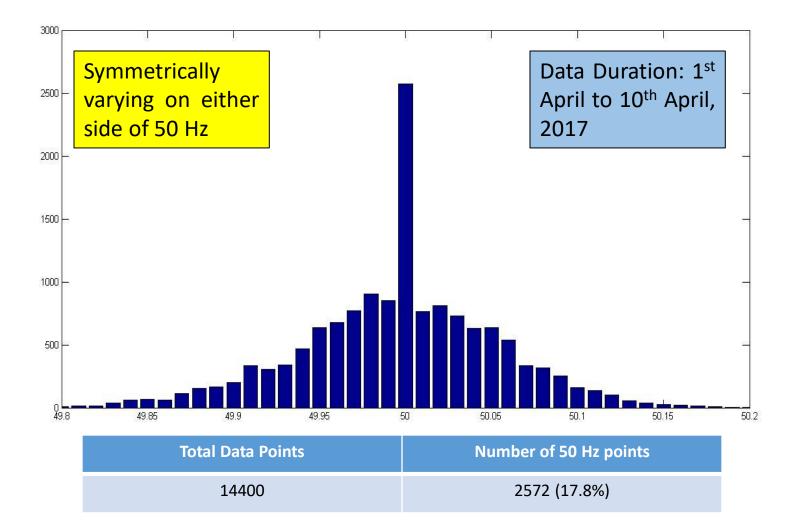
Internal Chemistry: Cathode- Lithium Iron Phosphate, Anode- Carbon & Electrolyte - Lithium Hexafluorophate and solution of carbonates

Details of Each Cell: 3.2 V, 80 Ah.

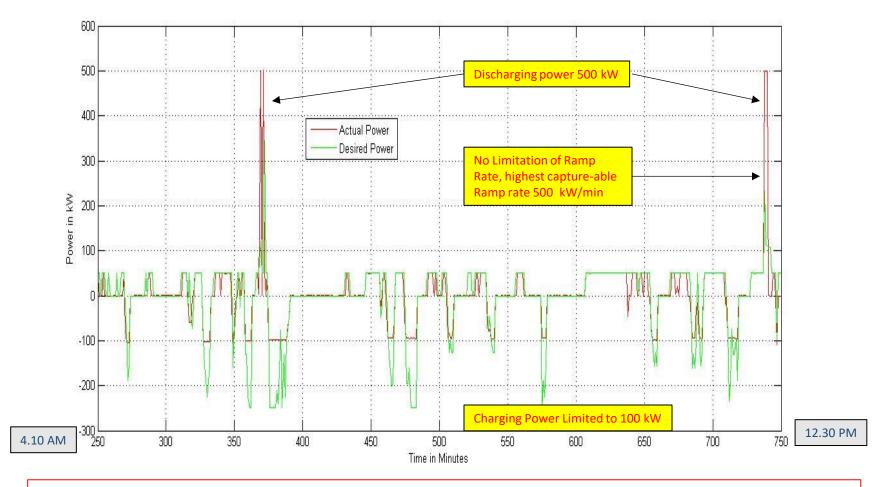
Configuration: Battery Module -2 cells in parallel, 6 such units in series (19.2 V, 150Ah). One String-36 modules in series. (432 cells, 691.2 V & 150 Ah), 4 such strings in Parallel (1728 cells, 691.2 V, 600 Ah)

PCS Efficiency: 96%

Total Capacity of Battery: 398 kWh(useful capacity at 2C 357 kWh)

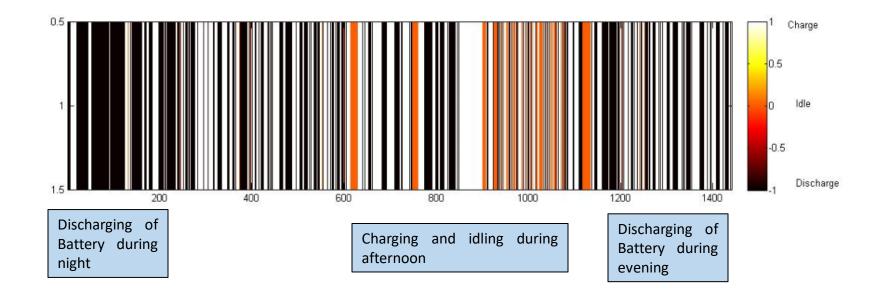

Rated DoD: 70%

Learnings


- Preparation of Technical Specification
- Life cycle of the battery
- Global standards for safety, testing etc.

Parameter	Advanced Lead Acid	Lithium Ion
Delivered Size	250 kWh, 500 kW	250 kWh, 500 kW
Design Sizing	691.2 kWh	398 kWh
Nos. of Cells	600 nos.	1728 nos.
Rated DoD	65%	70%
Battery Footprint	One 40 ft. and one 20 ft. Container Area Foot print: 45 sq. m.	One 40 ft. Container Area foot-print: 30 sq. m.
Cost	_	1.5 times than Advanced Lead Acid

Histogram of Frequency of Indian Grid



Power Desired and Power Actual: Analysis on Data of 1st April, 2017

Charging and Discharging Characteristics should be symmetrical as the frequency histogram is symmetrical

Charge, Discharge and Idle Time of Battery: 1st April 2017

Charging Time	Discharging Time	Idle Time
45.63%, 11 hrs	46.04%, 11 hrs	8.33%, 2 hrs

Frequency Regulation Operation

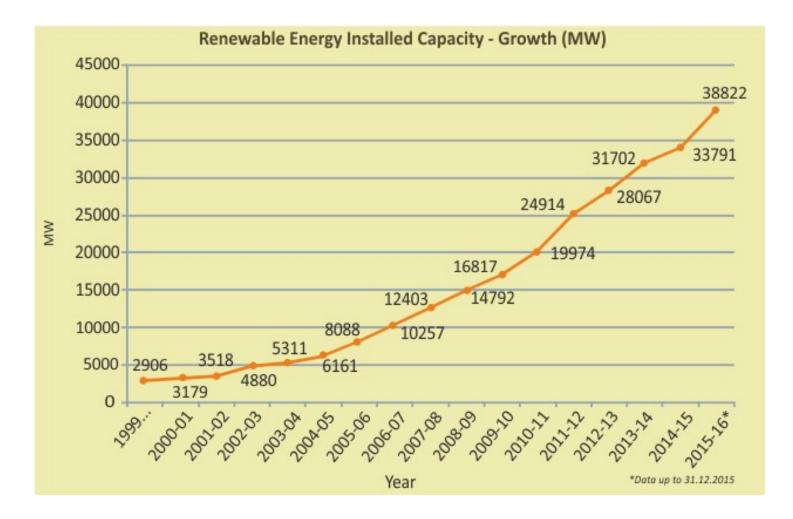
Name Relay System PCS Type: PCS Typ	京南瑞继保		POWERGRID L	ithium Battery Energy Storage System
Finstormer HV Messurement System Frequence Curve 0.0 kW AC Charge & Dickharge Curve 0.0 kW AC Charge & Dickharge Curve 0.0 kW Vis 22205 V Vy 222.73 V Vis 223.50 V Vis 223.50 V Vis 223.50 V Vis 2017/03/03 0.0 kW Dickharge Curve Dickharge Curve 0.0 kW Dickharge Curve 0.0 kW Dickharge Curve	Main Graph	BESS BMS S	ystem Relay	Energy Meter & AC Communication Database ACK
Iransformer HV Measurement Iransformer HV Measurement Iransformer HV Measurement Iransformer HV Measurement Iransformer HV Measurement If 0.000 A Ip 0.000 A Ip 0.000 A Ip 0.000 A Iransformer HV Measurement Iransformer HV Heid HRP p Temperature Controller FAIL Iransformer HV Heid HRP p Iransformer HV Heid HRP p <	Name: Relay System	PCS Type: PCS-9726 & PCS-	9617 Running Status Static	
ai 0.000 A 10 0.000 A W 232,95 V Vy 222,73 V Vy 233,90 Viy 402,323 V Vy 233,90 V Vy 402,323 V Vy 402,40 Vy 402,40 Vy 402,40 Vy 402,40 404,40 40	B-Crew	Transformer HV Measurement		AC Charge & Discharge Curve 0.0 k var
W 222.05 V Vy 223.23 V Vir 402.32 V Vy 405.30 V P 0.00 kW Q 0.00 kW Q 0.00 kW Q 0.00 kW P 0.00 kW Q 0.00 kW P 0.00 kW Q 0.00 kW P 0.00 P 0	Ir 0.00 A	. Iy 0.00 A	Ib 0.00 A	
P 0.00 kW Q 0.00 kWr PF 0.00 FS0/51 Relay PCS9726 Signals WT HIGH ALARM WT HIGH TRIP Temperature Controller FAIL NRI WT HIGH TRIP S051PL Op 5051PL Op 5051P2 Op 5051P3 Op S051PL Op 5051P2 Op 5051P3 Op 5051P3 Op 5051P3 Op S051P1 Op 5051P2 Op 5051P3 Op 5051P3 Op 5051P3 Op V1 232.85 V Vp 232.11 V Vb 233.6 V V2 302.06 Hz F 500.06 Hz 500.06 Hz 500.07 100.00 20.57 22.49 00.41 02.32 04.24 06.16 08.08 09.50 S0C Charve 840 % S0C Charve 840 % S0C On 100.00 100	Vr 232.95 V	Vy 232.73 V	Vb 233.39 V	
From PMS Measurement Vb Vb <th< td=""><td>Vry 402.32 V</td><td>Vyb 402.98 V</td><td>Vbr 405.40 V</td><td></td></th<>	Vry 402.32 V	Vyb 402.98 V	Vbr 405.40 V	
F50/51 Relay PCS9726 Signals WT HIGH ALARM WT HIGH TRIP Temperature Controller FAIL MIL WT HIGH ALARM MR2 WT HIGH TRIPO Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft PA Soft	P 0.00 kV	V Q 0.00 kVar	PF 0.00	
WT HIGH RIP Temperature Controller FAIL MRI WT HIGH HIPPo MRI WT HIGH THPop S051P1 Op 5051P2 Op 5051G1 Op 5051P3 Op S051G1 Op 5051P3 Op W1 232.85 V Vr 232.85 V Vy 400 2057 220.9 00.41 02.52 04.24 06.16 08.08 09.06 20.57 22.49 00.41 02.52 04.00 5051G1 Op Vr 233.16 V Vr 232.85 V Vy 233.36 V Vr 402.13 V Vb 233.36 V F 50.06 Hz 500 C Curve 840.% 500 C Curve 840.% 2007-03-03 84.00 700 700 91.00 70.00 70.00 70.00 70.00 91.00 91.00 91.00 91.00 91.00 91.00 91.00 91.00 91.00 91.00 91.00 91.00 91.00	F	50/51 Relay PCS9726 Signals		出来,我们们们们们就是自己的事件,我们们们是我们们,这些人们们们是我们们的人,我们们们们的人,我们们们们们们们们们们们们们们们们们们们们们们们们们
MR2 WT HIGH TIRPOP SOS TIP2 Op SOS TIP2 Op SOS TIP2 Op MR2 WT HIGH TIRPOP	WT HIGH ALARM	WT HIGH TRIP	Temperature Controller FAIL	
3031P1/0p 3031P2/0p	MR1 WT HIGH ALARM.Op	MR2 WT HIGH TRIP.Op		
5051G1 Op 19.06 20.57 22.49 00.41 02.32 04.24 06.16 08.08 09.59 I 9.06 20.57 22.49 00.41 02.32 04.24 06.16 08.08 09.59 I 9.06 20.57 22.49 00.41 02.32 04.24 06.16 08.08 09.59 I 9.06 20.57 22.49 00.41 02.32 04.24 06.16 08.08 09.59 I 9.06 20.57 22.49 00.41 02.32 04.24 06.16 08.08 09.59 I 9.06 20.57 22.49 00.41 02.32 04.24 06.16 08.08 09.59 I 9.06 20.57 22.49 00.41 02.32 04.24 06.16 08.08 09.59 I 9.06 20.57 22.49 00.41 02.32 04.24 06.16 08.08 09.59 I 9.06 20.57 22.49 00.41 02.32 04.24 06.16 08.08 09.59 I	5051P1.Op (5051P2.Op	5051P3.Op	
PMS Measurement Vr 232.85 V Vy 232.11 V Vb 233.36 V Vr 402.19 V Vyb 402.66 V Vbr 404.31 V F 50.06 Hz Image: Construction of the second of the se	5051G1.Op			
Vr 232.85 V Vy 232.11 V Vy 233.36 V Vr 402.19 V Vyb 402.66 V Vyb 404.31 V F 50.06 Hz Image: Comparison of the temperature of tempera		PMS Measurement		SOC Curve 84.0 % ■ SOC(%)
Vry 402.19 V Vyb 402.66 V Vyb 404.31 V F 50.06 Hz Image: constraint of the state of the	Vr 232.85 V	Vy 232.11 V	Vb 233.36 V	
F 50.06 Hz PMS PCS9617 Signals Uncontrollable BESS FreqRegulation BESS EnergyTimeShift BESS Matilsland Op Op FreqRegulation BESS MG.VTS.Alm	Vry 402.19 V	Vyb 402.66 V	Vbr 404.31 V	97.00
PMS PCS9617 Signals Based of the second se	F 50.06 Hz			94.00 production of the second
Uncontrollable BESS FreqRegulation BESS EnergyTimeShift BESS BC Chil BESS SOC Chil BESS MG.VTS.Alm		PMS PCS9617 Signals		
Rmt EnergyTimeSh BESS Idle BESS SOC Ctil BESS 79.00 Antilsland Op Op FreqRegulation BESS MG.VTS.Alm 79.00	Uncontrollable BESS	FreqRegulation BESS	EnergyTimeShift BESS	
Antilsland.Op Op FreqRegulation BESS MG.VTS.Alm 76.00 70.00				
		Op FreqRegulation BESS	MG.VTS.Alm	

🚱 🚞 💽 🙆

💌 🔩 🚺 🚝 🖳 🖾 💷 🛃 🚺

Frequency Regulation Operation

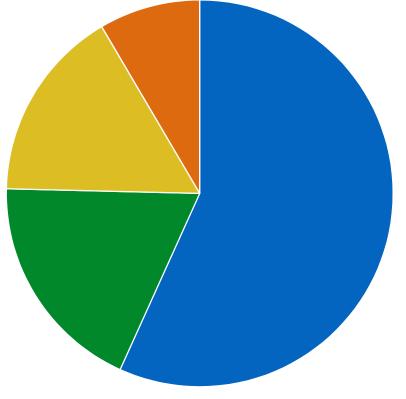
🕑 OrxaGrid


- Established in 1988
- Manufacturer of Test and Measurement Instruments for EHV Substation Equipment (CB, Transformers, LA, Isolators, etc)
- Dedicated 100+ Engineers for Testing & Commissioning Services
- Solution Provider in Protection and Automation (CRP & SAS, CSD, RTU & SCADA) Projects
- Group Manpower of 300+
- ISO 9001:2008 (Certified by TUV Germany)

Growth Of Renewable Energy in India

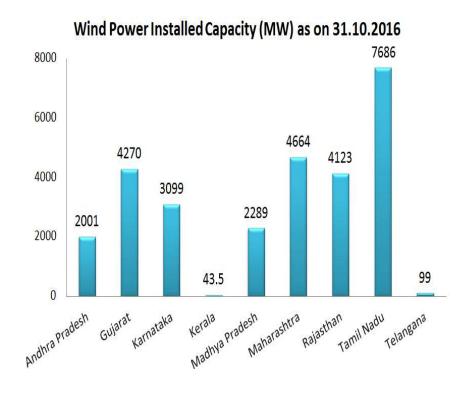
🕑 OrxaGrid

and a Target of 175GW by 2022!!

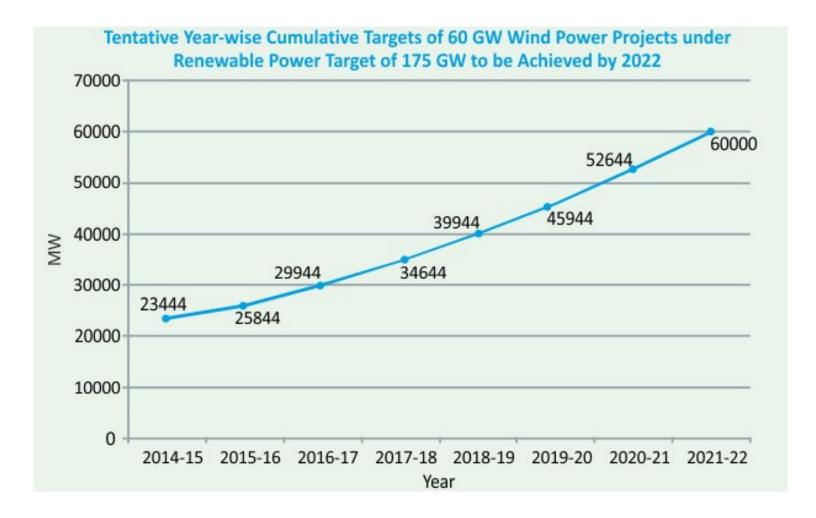


Customer

RE Current Scenario

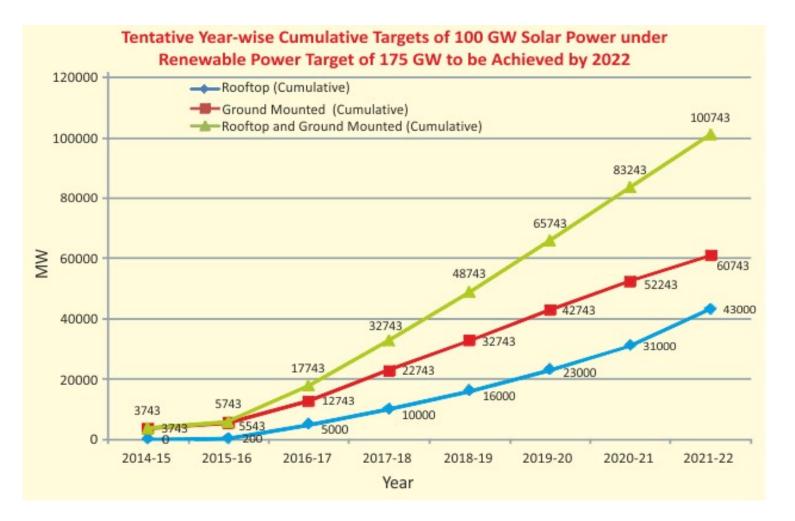

🕑 OrxaGrid

Installed RE as on 31.3.2017


■ Wind ■ Solar ■ Small Hydro ■ Biomass & Biogass Cogen

Major Windy States

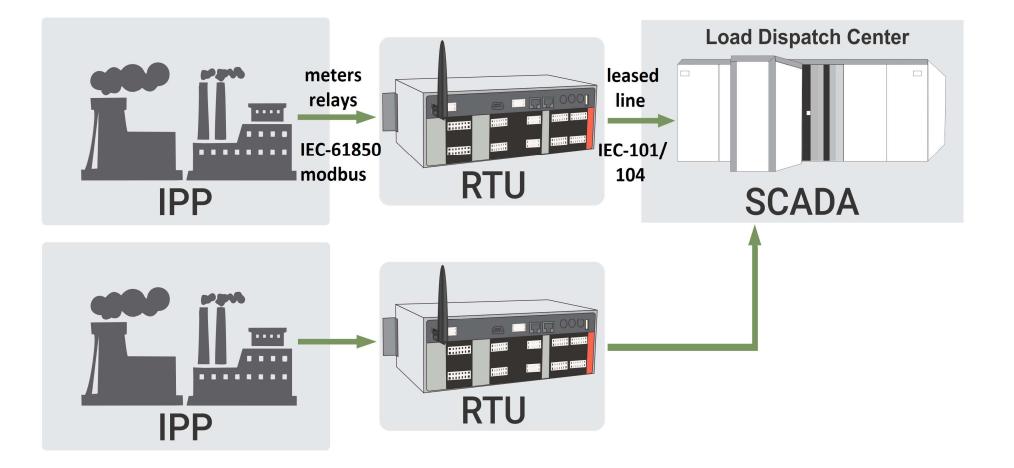
Year 2022: 60 GW Wind Power


🕑 OrxaGrid

Customer

Year 2022: 100 GW Solar Power

🕑 OrxaGrid



Customer

- 1. Variability & Uncertainty not only of Renewables Integration but also of the Demand Load
 - "Uncertainty" refers to the lack of accurate knowledge about future RE generation
 - "Variability" is the known natural variation in RE generation
- 2. Lack of Primary & Secondary response in the Grid to support during sudden loss of Generation
- 3. Changing load curve
- 4. Increasing peak to off-peak ratio
- 5. Sharp changes and Steep Ramps in the load curve
- 6. Reactive Power Management
- 7. Frequency Control
- 8. Congestions in transmission networks (New patterns of Power Flow)

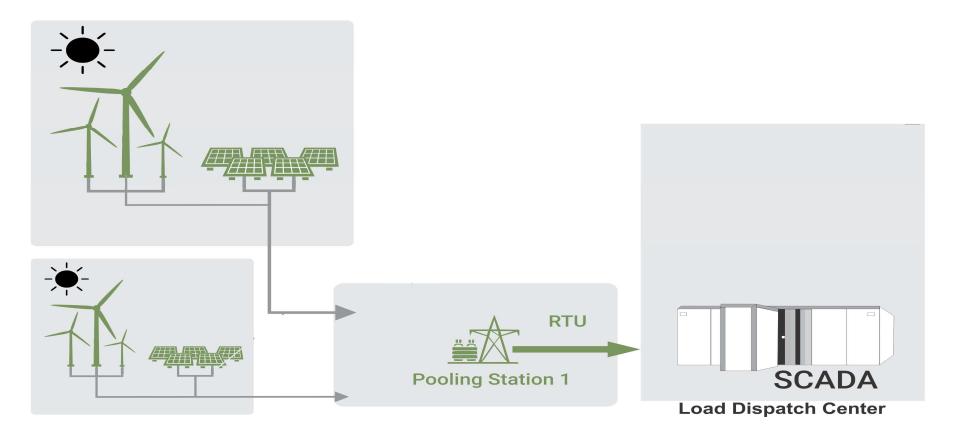
Current : Integration of IPP Data @SLDCs

OrxaGrid

Customers

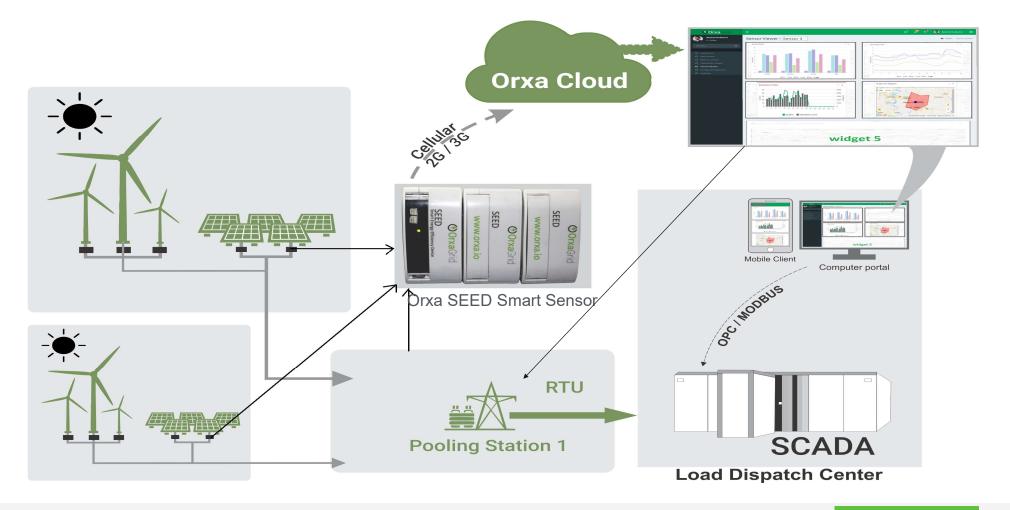
🕑 OrxaGrid

Current: Integration of IPP Data @SLDCs Major Cost Centres


- In such integrations, the major cost areas are:
 - Leased Line for communication and required modems/routers
 - Devices with ready Communication Protocols (IEC 60870-101/104)
 - Cost of RTU
 - Integration charges from SCADA Supplier for addition of new IPP data points into SCADA server

What we get from above costs:

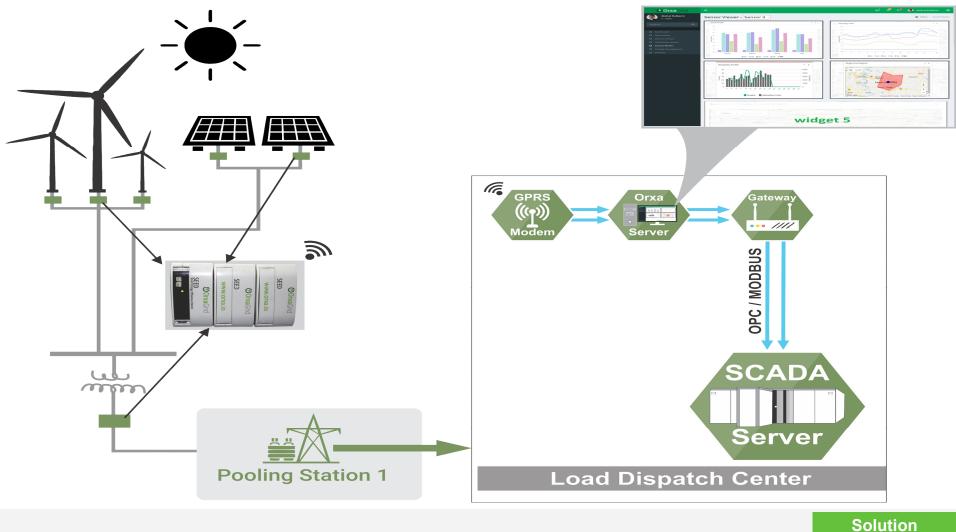
- Irms, Vrms, Real and Reactive Power, Energy, Frequency
- Breaker, Isolator Status points
- Reported at every couple of seconds or more to the central SCADA System



Solution

OrxaGrid Proposed Communication Solution

🕑 OrxaGrid


AWS Amazon Cloud Enabled Solution

OrxaGrid Proposed Communication Solution

OrxaGrid

Customer On Premise Solution

Benefits of OrxaGrid Solution

🕑 OrxaGrid

- **Cost Benefits**
- 50% Cost Savings from Traditional Solution because
 - No need for Leased lines or PLCC and required associated hardware
 - No need for expensive communication protocols ready devices
 - No need for Data Concentrator Units
 - No Hidden Integration Charges
 - Interoperability over OPC or Modbus

Benefits of OrxaGrid Solution

🕑 OrxaGrid

Technical Benefits

The Usual Parameters with GPS Time Synchronization

- Breaker/Isolator Status Points + Electrical Parameters: RMS current, RMS voltage, Frequency and all standard energy information (W,VAR,VA, Whr, PF) with GPS Time Stamp

MORE: Instantaneous Current and Voltage Sampled at 3.2kHz (64samples per cycle)

- Disturbance Recording
- Fault Waveform file capture for post-mortem analysis

MORE: Power Quality Information with 0.2S class Accuracy

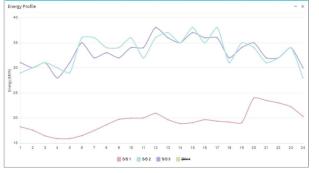
- Harmonics
- Voltage Sag and Swell (measured up to half a cycle)
- Synchro-Phasor Information

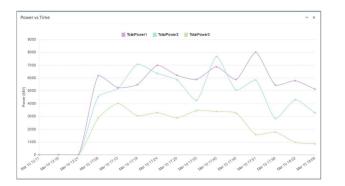
"Not only Quantity of Power but Quality of Power"

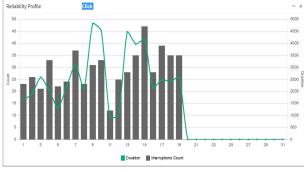
SEED Specifications

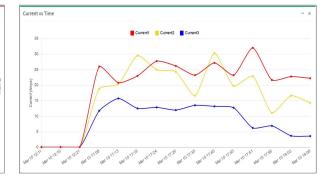
Inside a Windmill Panel....any Panel

- Customized Analog Current and Voltage
 Module
- Customized Digital I/O Modules
- Customized Sensor Modules
- Qualcomm powered GPRS Modem, WiFi, and Bluetooth
- Qualcomm Snapdragon Processor
- GPS Time Stamping and Geo-location Tagging
- 4GB Inbuilt Memory for data loss , prevention
- Compact & ergonomic Din Rail Mounted Enclosure

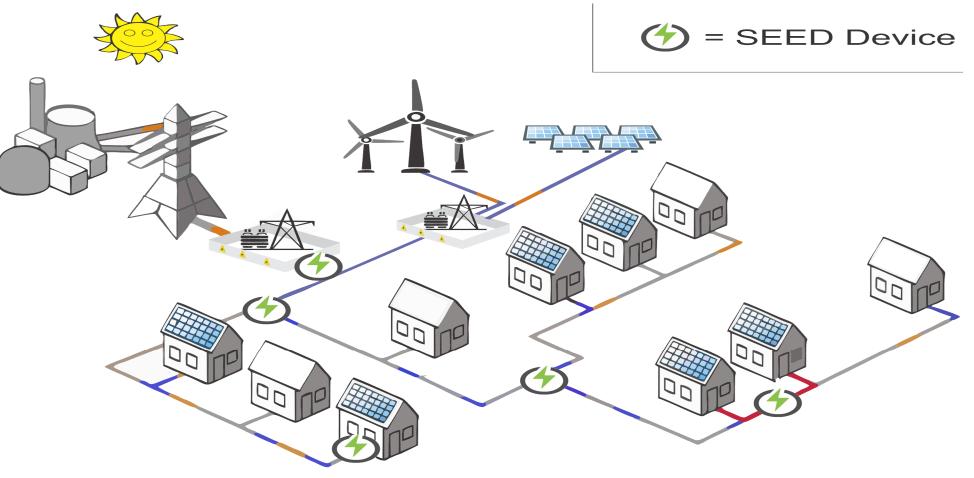

🕑 OrxaGrid


Orxa Dashboards for Renewables


🕑 OrxaGrid



ystem Alar	ms	- ×
Location	Description	Severity
KSUU	Line disturbance 30% higher	High
Line 5	Current approaching max capacity within 1 month	High
Substation 2	7% Conversion losses	Medium
Line 2	Power factor approaching permissible limit	Medium
Line 12	Line outage for 30 hours	Low



Link: http://orxa.io/pages/SensorViewer.php

Road Map: The Future of OrxaGrid Data Analytics Cloud OrxaGrid Rooftop Generations and Load Profiling

THANK YOU

YASH KULKARNI

YASH.KULKARNI@SCOPETNM.COM

(+91) 7710099219

Thank you

Benefit of Cloud Solution over On Premise Solution:

🕑 OrxaGrid

- 1. No need for Capital Purchase of Server Racks
- 2. No need for ensuring continuous firewall and virus protection
- 3. AWS Guaranteed Data Security
- 4. Customer owned MySql Database with total control
- 5. Secured user login with 2step verification of customer accounts
- 6. Cloud enabled access of data for All & from Everywhere