

भारत सरकार Government of India विद्युत मंत्रालय Ministry of Power केन्द्रीय विद्युत प्राधिकरण Central Electricity Authority विद्युत प्रणाली योजना एवं मूल्यांकन - । प्रभाग Power System Planning & Appraisal - I Division

सवा	平 /To		Dute: 09.08.19
1.	Chairperson,	2.	Member (Power System),
1	Central Electricity Authority		Central Electricity Authority
	Sewa Bhawan, R.K. Puram,		Sewa Bhawan, R.K. Puram,
	New Delhi – 110 066.		New Delhi – 110 066.
3.	Member (Economic & Commercial),	4.	Director (Trans)
	Central Electricity Authority		Ministry of Power
	Sewa Bhawan, R.K. Puram,		Shram Shakti Bhawan,
	New Delhi – 110 066.		New Delhi-110001.
5.	Chief Operating Officer,	6.	Manoj Kumar Upadhyay
	Central Transmission Utility		Deputy Adviser
	POWERGRID, Saudamini, Plot No. 2,		NITI Aayog, Parliament Street,
	Sector-29, Gurgaon – 122 001.		New Delhi – 110 001.
7.	Shri P. K. Pahwa,	8.	Shri Prabhakar Singh,
× .,	Ex. Member (GO&D), CEA		Ex. Director (Projects), POWERGRID
	428 C, Pocket -2,	a	D 904, Tulip Ivory, Sector-70,
	Mayur Vihar, Phase -1, Delhi – 110091.		Gurgaon – 122 001.

विषय: 31st जुलाई 2019 को आयोजित ''ट्रांसमिशन पर राष्ट्रीय समिति'' (एनसीटी) की चौथी बैठक -- मिनट्स ऑफ़ मीटिंग

Subject: 4th meeting of "National Committee on Transmission" (NCT) to be held on 31st July 2019 – Minutes of Meeting

Sir/Madam,

4th meeting of the "National Committee on Transmission" (NCT) was held on **31st July 2019 at 3:00 pm** under the chairmanship of Shri P. S. Mhaske, Chairperson, CEA in conference Room of CEA (Chintan), 2nd Floor, Sewa Bhawan, R.K. Puram, New Delhi. Minutes of the meeting are available on CEA website <u>http://www.cea.nic.in</u>. (path to access: Home Page-Wing-Power System-PSPA I-National Committee on Transmission)

Yours faithfully,

(Goutam Chief Engineer(PSPA-I) & Member Secretary (NCT)

Copy to:

(i) Joint Secretary (Trans), Ministry of Power, Shram Shakti Bhawan, New Delhi-

I/6436/2019

(ii) Chief Engineer (PSPA-II), CEA

- (iii) CEO, RECTPCL, ECE House, 3rd Floor, Annexe II, <u>28A, KG Marg, New Delhi -</u> <u>110001</u>
- (iv) PFC Consulting Ltd, First Floor, "Urjanidhi", 1, Barakhmba Lane, Connaught Place, New Delhi -110001

File No.CEA-PS-11-15(11)/1/2018-PSPA-I Division I/6436/2019/Inutes for the 4th meeting of National Committee on Transmission (NCT)

Date and Time: 31st July, 2019 at 03:00 pm

Venue: CHINTAN Conference Room, CEA, 2nd Floor, Sewa Bhawan, R.K. Puram, New Delhi

List of Participants is enclosed as Annexure-I

Chairperson, CEA as Chairman of the National Committee on Transmission (NCT) welcomed the participants to the 4th meeting of the NCT and requested Chief Engineer (PSPA-I), CEA to take up the agenda for discussions.

1. Confirmation of the minutes of 3rd meeting of National Committee on Transmission (NCT)

- 1.1 CEA stated that the minutes of 3rd meeting of National Committee on Transmission held on 1st March, 2019 were issued vide CEA letter No. File No.CEA-PS-11-15(11)/1/2018-PSPA-I/4170/2019/1766-1773 dated 14th March 2019. No comment / observation has been received on the minutes of the meeting.
- 1.2 Members noted the same and confirmed the minutes of 3rd NCT.
- 2. Modifications in the transmission schemes already recommended by NCT and ECT
- 2.1 CEA stated that the transmission schemes associated with RE projects (excluding the ones identified for implementation on potential basis) along with recommendation of 2nd NCT and 3rd ECT regarding its implementation is as given below:

S. No.	Name of Scheme	Estd cost (Rs. Cr.)	NCT Recomd	ECT Recomd.	Allocated to BPC	
1.	Additional 1x500MVA 400/220 kV (9 th) ICT, for injection from any additional RE project (other than 4000 MW injection under SECI bids upto Tranche IV) at Bhuj PS.	56.3	RTM	RTM (POWERGRID)		
2.	WRSS-21 Part-A –" Transmission System Strengthening for relieving over loadings observed in Gujarat Intra state system due to RE injections in Bhuj PS"	856	TBCB	TBCB	REC	
3.	WRSS-21 Part-A – "Conversion of existing 2x63 MVAR line reactors at Bhachau end of Bhachau – EPGL 400 kV D/c line to switchable line reactors"	19		RTM (POWERGRID)	
4.	WRSS-21 Part-B- Transmission system strengthening for relieving over loadings observed in Gujarat Intra-state system due to RE injections in Bhuj PS:	1865	TBCB	TBCB	PFC	
5.	Transmission system associated with RE generation at Bhuj-II Dwarka & Lakadia.	1075	TBCB	TBCB	REC	
6.	Transmission system for providing connectivity to RE projects at Bhuj-II (2000 MW) in Gujarat.	645	TBCB	TBCB	PFC	
7.	Jam Khambhaliya Pooling Station for providing connectivity to RE projects (1500 MW) in Dwarka (Gujarat)	229	TBCB	TBCB	REC	
	Interconnection of Jam Khambhaliya Pooling station for providing connectivity		RTM			

I/6436/201	98. No.	Name of Scheme	Estd cost (Rs. Cr.)	NCT Recomd	ECT Recomd.	Allocated to BPC
		to RE projects (1500 MW) in Dwarka (Gujarat)	169			
		Installation of 400/220 kV ICT along with associated bays at M/s CGPL switchyard.	37	TBCB		
	8.	400 kV line bay at Solapur PS for St-II connectivity to M/s Toramba	10	RTM	RTM (POV	WERGRID)
	9.	Transmission system associated with LTA application from Rajasthan SEZ Part-A	2312	RTM	RTM (POV	WERGRID)
	10.	Construction of Ajmer (PG)-Phagi 765 kV D/C line along with associated bays for Rajasthan SEZ	583 (509+74)		TBCB	REC
	11.	Scheme Transmission system associated with LTA applications from Rajasthan SEZ Part-B	676	TBCB	TBCB	PFC
	12.	Transmission system associated with LTA applications from Rajasthan SEZ Part-C	1365	TBCB	TBCB	REC
	13.	Transmission system associated with LTA applications from Rajasthan SEZ Part-D	1208	TBCB	TBCB	PFC
ICT Augmentation works14.Moga (PG) ISTS S/S assoLTA applications from S		ICT Augmentation works at existing Moga (PG) ISTS S/S associated with LTA applications from SEZs in Rajasthan	73	RTM	RTM (POWERGRID)	
	15.	ICT Augmentation works at Bhadla (PG) associated with 1630 MW LTA granted at Bhadla	105	RTM	RTM (POV	WERGRID)
	16.	ICT Augmentation works at existing Bhiwani (PG) ISTS S/S associated with LTA applications from SEZs in Rajasthan	65	TBCB	RTM (POV	WERGRID)

2.2 Modifications in the Transmission Schemes recommended for implementation through TBCB route

2.2.1 ECT in its 3rd meeting held on 21.12.2019, has recommended implementation of nine nos. of transmission schemes related to RE through TBCB route. The schemes are under bidding stage. Subsequent to the 3rd meeting of ECT, the transmission schemes were deliberated in the 2nd WRSCT meeting and 3rd NRSCT meeting, held on 21.5.2019 and 24.5.2019 respectively wherein the following modifications in the scheme have been agreed:

Item	Name of the scheme	Table	As recorded in the	Modification agreed
No.		location	minutes of the meeting	
			of 2 nd NCT	
5.2	WRSS-21 Part-A	Sl. No. 1	2x1500MVA, 765/400kV	2x1500MVA,
	:Transmission System	3 rd Column	400kV ICT bay-2	765/400kV
	strengthening for relieving		765kV ICT bay-2	400kV ICT bay-2
	over loadings observed in		400kV line bay-4	765kV ICT bay-2
	Gujarat Intra-state system		765kV line bay-2	400kV line bay-4
	due to RE injections in		1x330MVAr, 765 kV,	765kV line bay-2
	Bhuj PS		1x125MVAr, 420 kV	1x330MVAr, 765 kV,
			765kV Reactor bay- 1	1x125MVAr, 420 kV

1/6436/201	9I tem	Name of the scheme	Table	As recorded in the	Modification agreed
	No		location	minutes of the meeting	
	110.		location	of 2 nd NCT	
·				400kV Reactor bay -1	765kV Reactor bay- 1
				Took v Reactor Buy 1	400kV Reactor bay 1
					400KV Reactor Day -1
					1x500 MVA, 765/400
					kV, 1-ph ICT (spare
					unit)
					1x110 MVAR, 765
					kV. 1 ph. reactor
					(snare unit)
					(for both 1x330
					MVA w have w
					NIVAL DUST
					eactor under Part A
					and 1x330 MVAr line
					reactor on Lakadia-
					Vadodara line under
					Part B)
	5.3	WRSS-21 Part-B -	Sl. No. 2	330 MVAR reactor - 4	330 MVAR reactor - 4
		Transmission System	3 rd Column	765kV Reactor bay - 4	765kV Reactor bay - 4
		strengthening for relieving			
		over loadings observed in			1x110 MVAr, 765 kV,
		Gujarat Intra-state system due to RE injections in Bhui PS			1 ph. switchable line
					reactor (spare unit)
					at Vadodara end
	5.4	Transmission System	S no 3	240MVAr switchable	240MVAr switchable
	•••	associated with RE	2 nd column	Lina raactor at Lakadia	Line reactor at
		generations at Bhuj–II, Dwarka & Lakadia			Banaskantha PS end
				PS end of Lakadia PS	of Lakadia PS –
				– Banaskantha PS	Banaskantha PS 765kV
				765kV D/c line	D/c line
			S.no 3.	2x240 MVAR	2x240 MVAR
			3 rd column	765kV reactor Bays -2	765kV reactors along
					with bays -2
					1x80 MVAr. 765 kV.
					1ph. switchable line
					reactor (spare unit) at
					Banaskantha end
	5.5	Transmission System for	Sl. No. 1	765/400kV,	765/400kV,
		providing connectivity to	3 rd Column	2x1500MVA,	2x1500MVA,
		RE projects at Bhuj-II		400/220kV, 4x500MVA	400/220kV,
		(2000MW) in Gujarat		765kV ICT bay-2	4x500MVA
				400kV ICT bay-6	765kV ICT bay-2
				220kV ICT bay- 4	400kV ICT bay-6
				765kV line boy 4	220kV ICT bay 4
				2201-W line bays 7	220KV ICI Udy- 4 7651/W line box 4
				220kV line bays -7	705KV line bay-4
				1x330MVAr, /65kV,	220KV line bays -/
				1x125MVAr, 420kV	1x330MVAr, 765kV,
				765kV reactor Bays -1	1x125MVAr, 420kV
				420kV reactor Bays -1	765kV reactor Bays -1
					420kV reactor Bays -1

File No.CEA-PS-11-15(11)/1/2018-PSPA-I Division Table **Modification** agreed I/6436/2019Item Name of the scheme As recorded in the location No. minutes of the meeting of 2nd NCT 1x500 MVA, 765/400 kV, 1 ph. ICT (spare unit) 1x110 MVAr, 765 kV, 1 ph. reactor (spare unit) Additional 1x240 MVAr scope to be switchable line added at Sl. reactor for each No. 3 circuit at Bhuj II PS 2ndColumn: end of Bhuj II -Scope Lakadia 765 kV D/C line Additional 2x240 MVAr, 765 kV scope to be with 400 ohm NGR added at Sl. 765 kV reactor bays-No. 3 2 nos. 3rdColumn: 1x80 MVAr, 765 kV, Capacity 1 ph. switchable line reactor (spare unit) at Bhuj II end 765/400kV - 3x1500 6.1 Transmission Sl. No. 1 765/400kV, 3x1500 system 3rd Column associated with LTA MVA. MVA. applications from 765kV ICT bay-3 765kV ICT bay-3 Rajasthan SEZ Part-A 400kV ICT bay-3 400kV ICT bay-3 400kV line bay-2 400kV line bay-2 765kV line bay-2 765kV line bay-2 240 MVAr 765 kV 240 MVAr 765 kV reactor-2 no. reactor-2 no. 125 MVAr400 kV 125 MVAr400 kV reactor-1 no. reactor-1 no. 765kV reactor bay-2 765kV reactor bay-2 400kV reactor bay-1 400kV reactor bay-1 1x500 MVA, 765/400 kV, 1 ph. ICT (spare unit) 1x80 MVAr, 765 kV, 1 ph reactor (spare unit) Sl. No. 4 765/400kV -765/400kV, 3rd Column 2x1500MVA 2x1500MVA 765kV ICT bay-2 765kV ICT bay-2 400kV ICT bay-2 400kV ICT bay-2 400kV line bay-2 400kV line bay-2 765kV line bay-4 765kV line bay-4 240 MVArbus reactor-2 240 MVArbus reactor-

154

125 MVAr bus reactor-1

1/6/36/201	Oltem	Name of the scheme	Table	As recorded in the	Modification agreed
1/0430/201	M.	Name of the scheme		As recorded in the	Wibumcation agreed
	INO.		location	f and NCT	
					107 107 4 1
				/65kV reactor bay-2	125 MVAr bus reactor-
				400kV reactor bay-1	1
					765kV reactor bay-2
					400kV reactor bay-1
					-
					1x500 MVA 765/400
					1×300 MVA, $703/400$
					kv, 1 pn. IC1 (spare
					unit)
					1x80 MVAr, 765 kV,
					1 ph. reactor (spare
					unit)
					(for both 2x240
					MVAr bus reactor
					and 2x240 MVA n line
					anu 2x240 WIVAr Inte
					reactor on Bikaner-
					Bhadla II 765 kV D/C
					line (after LILO))
			Sl. No. 8	330 MVAr reactor-2	330 MVAr reactor-2
			3 rd Column	765kV reactor bay-2	765kV reactor bay-2
					1x110 MVAr, 765 kV,
					1 ph. reactor (spare
					unit)
	61	Transmission system	Sl No 10	765 kV line hav- 4	unity
	•••	associated with LTA	3 rd Column		• 765 kV line bay
		applications from			(AIS)- 3 (2 bays at (BR)) (AIS)
		Rajasthan SEZ Part- Λ			Ajmer (PG) S/stn
		Transmission alamanta			and I bay at Phagi
		Iransmission elements			(RVPN) S/stn)
		at S.no 9 and 10 have			1 1 010
		been separated and are			• I complete GIS
		being implemented as			DIA 703 KV (2 Main Breakers and
		separate scheme named			1 Tio Proglem) of
		as			I THE BREaker) at Dhagi (DVDN)
		"Construction of			Fliagi (KVFN) S/stn
		Ajmer (PG)-Phagi 765	Additional		5/311.
		kV D/C line along with	scope to be		1X240MVAr, 765 kV
		associated bays for	added as SI		Bus Reactor with GIS
		Rajasthan SEZ"	no 11		bay at Phagi 765/400
			2^{nd} column		kV S/stn
			Scope		1x80MVAr, 765kV,
			•		1 ph reactor (Spare
					Unit)
			Additional		1x240 MVAr. 765kV
			scope to be		Reactor
			added at SI		
			no. 11		765kV reactor Bav
			3 rd column		(GIS) -1 (2 nd Main bav
			Capacity		of the new DIA being
			- •		created for termination
					of 765 kV D/c line
					from Ajmer)

I/6436/2019Item	Name of the scheme	Table	As recorded in the	Modification agreed
No.		location	minutes of the meeting of 2 nd NCT	
		Note (b)	POWERGRID and RVPN to provide space for 2 nos. of 765kV bays at Ajmer(PG) and Phagi (RVPN) respectively for termination of Ajmer (PG)– Phagi 765kV D/c line	(b)POWERGRID to provide space for 2 nos. of 765kV bays (AIS) at Ajmer(PG) for termination of Ajmer (PG)– Phagi 765kV D/c line
				(c) RVPNL to provide space for 1 no. of AIS bay and 1 complete GIS DIA at Phagi (RVPN) for termination of Ajmer (PG)– Phagi 765kV D/c line and space for installation of bus reactor at Phagi (RVPN) along with space for spare reactor
6.3	Transmission system associated with LTA applications from Rajasthan SEZ Part-C	Sl. No. 1 2 nd Column	Establishment of 765/400kV, 2x1500 MVA S/s at suitable location near Khetri with 765kV (2x240MVAR) and 400kV (1x125 MVAR) bus reactor <u>Future provisions:</u> Space for: 400/220 kV ICTs along with bays: 4 nos. 765kV line bays: 4nos 400kV line bays: 4nos. 220kV line bays: 7nos	Establishment of 765/400kV, 2x1500 MVA S/s at suitable location near Khetri with 765kV (2x240MVAR) and 400kV (1x125 MVAR) bus reactor Future provisions: Space for: 765/400 kV ICTs along with bays: 2 nos. 400/220 kV ICTs along with bays: 4 nos. 765kV line bays: 4nos. 220kV line bays: 7nos
		Sl. No. 1 3 rd Column	765/400kV - 2x1500MVA 765kV ICT bay-2 400kV ICT bay-2 400kV line bay-2 765kV line bay-2 240 MVAr (765kV) Bus Reactor -2 125MVAr (400 kV) Bus Reactor -1 765 kV Reactor bay - 2 400 kV Reactor bay - 1	765/400kV - 2x1500MVA 765kV ICT bay-2 400kV ICT bay-2 400kV line bay-2 765kV line bay-2 240 MVAr (765kV) Bus Reactor -2 125MVAr (400 kV) Bus Reactor -1 765 kV Reactor bay - 2 400 kV Reactor bay - 1

-		File NO.CEA-PS	-11-13(11)/1/4	2010-FSFA-I DIVISION	
I/6436/201	9 Item	Name of the scheme	Table	As recorded in the	Modification agreed
	No.		location	minutes of the meeting	_
				of 2 nd NCT	
					1 500 MVA 765/400
					1X500 WIVA, 705/400
					kv, 1 ph. ICI (spare
					unit)
					1x80 MVAr, 765 kV,
					1 ph. reactor (spare
					unit)
					(for both 2x240
					MVAr hus reactor
					and 2x240 MVAr line
					reactor on Bikaner-
					Knetri /65 kV D/C
			<u> </u>		line at Khetri end)
			SI. No. 6	240 MVAR Line reactor	240 MVAR Line
			3 ^{ra} Column	-2	reactor -2
				765 kV Reactor bay -2	765 kV Reactor bay -2
					1x80 MVAr, 765 kV,
					1 ph. reactor (spare
					unit)
					(for 2x240 MVAr line
					reactor on Khetri-
					.Ihatikara 765 kV
					D/C line at Ihatikara
					end)
ŀ	6.4	Transmission system	SI No 3	1x240 MVAr Line	1x240 MVAr Line
	0.1	associated with ITA	3 rd Column	reactor _/	reactor _/
		associated with LTA	5 Column	765 LV Deceter here 4	765 IV Deceter here 4
		applications from		703 KV Reactor bay -4	/03 KV Reactor Day -4
		Kajasinan SEZ Pan-D			
					1x80 NIVAr, 765 kV,
					1 ph. reactor (spare
					unit)
					(for 2x240 MVAr line
					reactor on Bikaner-
					Khetri 765 kV D/C
					line at Bikaner end)

- 2.2.2 The above proposed modifications have already been incorporated in the RfP documents of the respective schemes and have been agreed in the WRSCT and NRSCT meetings.
- 2.2.3 Members concurred with the modifications in the already approved transmission schemes.

2.3 Modifications in the Transmission Schemes recommended for implementation through RTM route

2.3.1 CEA stated that in the 2nd meeting of WRSCT and 3rd meeting of NRSCT held on 21.5.2019 and 24.05.2019 respectively, the following modifications in the transmission schemes have been agreed. The schemes have already been recommended in 1st and 2nd NCT meetings followed by 2nd and 3rd ECT meetings to be implemented through RTM route by POWERGRID.

File No.CEA-PS-11-15(11)/1/2018-PSPA-I Division					
I/6436/2019Ite	em No.	Scheme name	Table	As recorded in the	Modifications
			location	minutes of 1 st meeting	agreed
				of NCT	2
6.8	8.2	Augmentation of	S. no 6.8.2	A) Jabalpur	A) Jabalpur
		transformation capacity in	2 nd column	400/220kV S/S of	400/220kV S/S of
		Western Region		POWERGRID	POWERGRID
		-		(i) 400/220kV,	(i) 400/220kV
				500MVA ICT – 1	500MVA ICT - 1
				no	no
				(ii) 400kV ICT bay - 1	(ii) 400kV ICT bay -
				no	1 no
				(iii) 220kV ICT bay-1	(iii) 220kV ICT bay-1
				no.	no.
				B) Itarsi 400/220 kV	B) Itarsi 400/220 kV
				S/S of	S/S of
				POWERGRID	POWERGRID
				(i) 400/220kV	(i) 400/220kV 500
				500MVA ICT – 1	MVA ICT – 1
				no.	no.
				(ii) 400kV ICT bay -1	(ii) 400kV ICT bay
				no.	-1 no. <i>(outdoor</i>
				(iii) 220kV ICT bay-1	GIS bay
				no.	adopting 2 CB
					scheme)
					(111) 220kV ICT
					bay-1 no.
			SI. No.		
			6.8.2	68	71
			3 ^{ra} Column		

Item	Scheme name	Table	As recorded in the	Modifications agreed
No.		location	minutes of the 2 nd	
			meeting of NCT	
5.1.4	Additional 1x500MVA	Sl. No. 1	Additional	Additional
	400/220kV (9th) ICT, for	2 nd Column	1x500MVA	1x500MVA
	injection from any additional		400/220kV (9th) ICT,	400/220kV (9th) ICT,
	RE project (other than		for injection from any	for injection from any
	4000MW injection under		additional RE project	additional RE project
	SECI bids upto Tranche IV)		(other than 4000MW	(other than 4000MW
	at Bhuj PS		injection under SECI	injection under SECI
			bids upto Tranche IV)	bids upto Tranche IV)
			in existing Bhuj PS	in existing Bhuj PS
			with associated 400	with associated 400
			kV GIS bay and	kV GIS bay and
			220kV AIS bay	220kV Hybid/MTS
				bay
6.5	ICT Augmentation works at	Sl. No 1,	1x1500MVA,	Deleted from scheme.
	existing Moga (PG) ISTS S/S	3rd	765/400kV	
	associated with LTA	Column	765kV ICT bay-1	
	applications from SEZs in		400kV ICT bay-1	
	Rajasthan			

2.3.2 Members concurred the same.

4 E (4 A) /4 /0

I/6436/201D enotification/Dropping of the Transmission Scheme "Connectivity System for Lanco Vidarbha Thermal Power Pvt. Ltd. (LVTPPL) and Inter State Transmission system strengthening in Chhattarpur area in Madhya Pradesh"

3.1CEA stated that the implementation of the Inter State Transmission system strengthening in Chhatarpur area in Madhya Pradesh was taken as a part of the transmission scheme "Connectivity System for Lanco Vidarbha Thermal Power Pvt. Ltd. (LVTPPL) and Inter State Transmission system strengthening in Chhattarpur area in Madhya Pradesh" through TBCB route with PFCCL as the Bid Process Coordinator for the scheme.

Empowered Committee in its 37th meeting held on 20.09.2017 had decided that the bidding process for the scheme may be taken up after resolution of financial issue and after ascertaining the progress of the generation project.

3.2In the 2nd NCT (National Committee on Transmission) meeting held on 04.12.2018, the progress of the transmission scheme "Connectivity System for Lanco Vidarbha Thermal Power Pvt. Ltd. (LVTPPL) and Inter State Transmission system strengthening in Chhattarpur area in Madhya Pradesh" was reviewed. In the meeting CEA had stated that there was no progress in resolution of financial issue by the developer of LVTPPL, therefore, the bidding of the scheme is still on hold. The scheme with reduced scope (Inter State Transmission system strengthening in Chhattarpur area in Madhya Pradesh) would be put up in the next WRSCT and based on the deliberations, the bidding process of the scheme could be resumed with the reduced scope of works.

Accordingly, in the 2nd meeting of WRSCT held on 21.05.2019, the transmission scheme "Inter State Transmission system strengthening in Chhattarpur area in Madhya Pradesh' was discussed and it was agreed to drop the transmission scheme.

3.3 Members agreed that the scheme may be denotified.

4. Status of transmission schemes under bidding process - briefing by BPCs

4.1 BPCs - PFCCL and RECTPCL presented the status of the transmission schemes under bidding process. The same is enclosed at Annexure-II.

5. Cost estimates for the transmission projects to be implemented through tariff based competitive bidding (TBCB)

- 5.1 CEA stated that in the 3rd meeting of NCT held on 1st March, 2019, Cost Committee was constituted with the representatives from CEA, Powergrid / CTU and BPCs to work out a cost matrix for different transmission schemes based on survey report of BPCs.
- 5.2 The cost committee met two times i.e on 14.03.2019 and 06.06.2019 and worked out the cost of the following transmission schemes based on the preliminary route survey carried out by the BPCs:

SI. No.	Independent Transmission Projects	Empowered Committee Cost (in Rs. Crore)	Estimated Cost of the Project as per Cost Committee (including RoW compensation) (in Rs. Crore)
1.	Western Region Strengthening Scheme – XIX (WRSS-XIX) and North Eastern Region Strengthening Scheme – IX (NERSS-IX) – PECCL (BPC)	586	1223.24
2.	400 kV Udupi (UPCL) – Kasargode D/C Line-RECTPCL (BPC)	620	754.87

File No.CEA-PS-11-15	(11)/1/2018-PSPA-I Division
----------------------	-----	--------------------------

I/6436/201	9 51.	Independent Transmission Projects	Empowered	Estimated Cost of the
	No.		Committee Cost (in Rs. Crore)	Project as per Cost Committee (including RoW compensation) (in Rs. Crore)
	3.	Western Region Strengthening Scheme – 21 (WRSS-21) Part-A - Transmission System Strengthening for relieving over loadings observed in Gujarat Intra-State System due to RE Injections in Bhuj PS - RECTPCL (BPC)	856	1089.89
	4.	WRSS-21 Part-B - Transmission System strengthening for relieving over loadings observed in Gujarat Intra-state system due to RE injections in Bhuj PS- PFCCL (BPC)	1865	2002.56
	5.	Transmission System for providing connectivity to RE projects at Bhuj-II (2000MW) in Gujarat - PFCCL (BPC)	645	1409.17
	6.	Transmission system associated with LTA applications from Rajasthan SEZ Part-D - PFCCL (BPC)	1208	1630.58
	7.	Transmission system associated with LTA application from Rajasthan SEZ (Part -C) - RECTPCL (BPC)	1365	1448.15

- 5.3 Members enquired about high cost variation in Empowered Committee cost and the cost worked out by the Cost Committee in case of "Western Region Strengthening Scheme -XIX (WRSS-XIX) and North Eastern Region Strengthening Scheme - IX (NERSS-IX)" and "Transmission System for providing connectivity to RE projects at Bhuj-II (2000MW) in Gujarat".
- 5.4 CEA stated the estimated cost also includes the RoW cost. In case of "Western Region Strengthening Scheme -XIX (WRSS-XIX) and North Eastern Region Strengthening Scheme -IX (NERSS-IX)", on account of severe RoW issues, choice was left with the bidders to use technological options like underground cable, GIL, monopoles to overcome RoW problem. While estimating the cost of the scheme, provision of 400 kV cable in about 2 km section from Navi Mumbai 400 kV substation has been assumed along with RoW cost based on detailed survey done by BPC's. However, even with estimated cost of Rs 1223 crores, levelised tariff that has been discovered after E-RA (electronic Reverse Auction) is on the higher side as compared to levelised tariff calculated on CERC norms. The BEC (Bid Evaluation Committee) for the scheme has referred it to Cost Committee to review/re-assess the estimated cost of the scheme.
- CEA further stated that the reason behind high cost variation for "Transmission System for 5.5 providing connectivity to RE projects at Bhuj-II (2000MW) in Gujarat" is the change in the location of Bhuj-II PS to the western side of Bhuj (PG), which resulted in longer lengths of associated transmission lines and requirement of line reactors.
- 5.6 Members noted the same.

6. New Inter-State Transmission Schemes in Western Region

1/6436/2019 Transmission schemes for evacuation of Power from potential Solar and Wind Energy Zones (17.5 GW) in Western Region under Phase-II

CEA stated that in the 2nd meeting of WRSCT held on 21.05.2019, following transmission schemes for evacuation of 17.5 GW (17 GW Solar + 0.5 GW Wind) RE in Western Region under Phase-II of " Transmission schemes for Integration of 66.5 GW RE into ISTS " has been technically agreed .

6.1.1 Name of the Scheme: Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ – Part A

Sl.	Scope of the Transmission	Capacity /km	Estimated Cost
No.	Scheme		(in Rs Cr)
1.	Establishment of 765/400 kV,	765/400 kV, 1500 MVA ICT – 3	604
	3x1500 MVA & 400/220kV,	400/220 kV, 500 MVA ICT – 6	
	6x500MVA Kutch (Rapar)		
	SEZ Pooling Point with	765/400 kV, 500 MVA spare ICT (1-	
	765kV (1x330MVAR) and	phase) – 1	
	400kV (125 MVAR) bus		
	reactor	765 kV ICT bays – 3	
		400 kV ICT bays – 9	
	Future provisions: Space for	220 kV ICT bays – 6	
	765/400kV ICTs along with	765 kV line bays – 4	
	bays: 1 no.	220 kV line bays - 10	
	400/220kV ICTs along with	330 MVAr, 765 kV bus reactor	
	bays: 2 nos.	125 MVAr, 420 kV bus reactor	
	765kV line bays: 4 nos.	765 kV reactor bay – 1	
	400kV line bays: 8 nos.	420 kV reactor bay – 1	
	220kV line bays: 4 nos.		

		File No.CEA-PS-11-	15(11)/1/2018-PSPA-I Division	
I/6436/201	9	765kV bus reactor along with	110 MVAR, 765 kV, 1 ph Reactor	
		bays: 1no	(spare unit) -1	
		400kV bus reactor along with		
		bays: 1no		
	2.	LILO of Lakadia – Banaskantha 765kV D/c line at Kutch (Rapar) SEZ PP	LILO Route Length - 70	328
			Total	932

Note: Space for future provisions for 400 kV and 765 kV line bays to kept including the space for switchable line reactors.

- 6.1.1.1 CEA stated that the Kutch (Rapar) Pooling Station has been proposed with 4500 MVA, 765/400 kV transformation capacity and 3000 MVA, 400/220 kV transformation capacity along with 10 no. of 220 kV line bays for evacuation of power from the entire 3 GW of RE potential in Rapar SEZ. In addition, 2 GW was being integrated at Lakadia 765/400/220 kV Pooling Station which would be evacuated through Rapar- Ahmedabad 765 kV D/c line. Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ has been segregated into three packages namely, Part A, B and C.
- 6.1.1.2 Regarding the implementation time for the scheme NCT members of the opinion that a minimum period of 18 months needs to be given for implementation of the scheme by the successful bidder (Transmission Service Provider). As per the Transmission Service Agreement (TSA) of the schemes being implemented through TBCB route, normally the zero date of the project is the SPV acquisition date by the successful bidder. Considering a period of 6 months required for the bidding process, a period of atleast 24 months (bidding plus implementation time) for the scheme was required from the date of Gazette notification of the scheme. As the scheme is for evacuation of 3 GW of RE power (out of 66.5 GW of RE projects to be implemented by December' 2021), therefore, completion time of the scheme can be considered as December' 2021. Also the Part A, B and C of the Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ needs to be implemented in the same time frame.
- 6.1.1.3 After deliberations, NCT recommended the following:
 - i) Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ – Part A to be implemented through TBCB route.
 - ii) The completion schedule for the scheme is December' 2021
 - iii) SECI to invite bids for setting up of Solar RE projects for the entire potential of 5 GW capacity in Rapar (3 GW injection at Rapar and 2 GW injection at Lakadia) and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme.
 - iv) For implementation purpose, Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ has been segregated into three packages namely, Part A, B and C and all needs to be implemented in the same time frame.
- 6.1.2 Name of the Scheme: Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ-Part B

Sl.	Scope of the Transmission	Capacity /km	Estimated Cost
No.	Scheme		(in Rs Cr)

File No.CEA-PS-11-15(11)/1/2018-PSPA-I Division						
I/6436/2019	1.	Kutch (Rapar) SEZ PP - Ahmedabad 765kV D/c line	Length – 250	1171		
	2.	765 kV, 240 MVAr switchable line reactor on each circuit at both ends of Kutch (Rapar) SEZ PP - Ahmedabad 765kV D/c line	765 kV, 240 MVAr reactor – 4 nos. 765 kV, 80 MVAr reactor (1-ph) spare unit – 1 no at Rapar end. Switching equipments for line reactor- 4	122		
	3.	2 no. of 765 kV line bays at Kutch (Rapar) end and 2 no. of 765 kV line bays at Ahmedabad end for Kutch (Rapar) SEZ PP - Ahmedabad 765kV D/c line	765 kV line bays – 4	80		
			Total	1373		

163

Note :Developer of Kutch(Rapar)PS and Ahmedabad PS to provide space for 2 nos of 765kV line bays & space for 2 nos. of 240 MVAR Switchable Line reactors at their respective PS for termination of Kutch (Rapar) SEZ PP - Ahmedabad 765kV D/c line

6.1.2.1 NCT recommended the following:

- i) Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ Part B to be implemented through TBCB route.
- ii) The completion schedule for the scheme is December' 2021
- iii) SECI to invite bids for setting up of Solar RE projects for the entire potential of 5 GW capacity in Rapar (3 GW injection at Rapar and 2 GW injection at Lakadia) and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme.
- iv) For implementation purpose, Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ has been segregated into three packages namely, Part A, B and C and all needs to be implemented in the same time frame.
- 6.1.3 Name of the Scheme: Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ Part C

SI.	Scope of the Transmission	Capacity /km	Estimated Cost
No.	Scheme		(in Rs Cr)
1.	Establishment of 765/400kV,	765/400 kV, 1500 MVA ICT – 2	263
	2X1500 MVA at suitable location		
	near Ahmedabad (towards eastern	765/400 kV, 500 MVA spare ICT	
	side of Ahmedabad) with 765kV	(1-phase) – 1	
	(1x330MVAR) and 400kV (125		
	MVAR) bus reactor	765 kV ICT bays – 2	
		400 kV ICT bays – 2	
	Future provisions: Space for	765 kV line bays – 2	
	765/400kV ICTs along with		
	bays: 2 nos.	330 MVAr, 765 kV reactor	

		File No.CEA-PS-11-15	11)/1/2018-PSPA-I Division	
I/6436/2019		400/220kV ICTs along with	125 MVAr, 420 kV reactor	
		bays: 4 nos.	765 kV reactor bay -1	
		765kV line bays: 10 nos.	420 kV reactor bay – 1	
		400kV line bays: 8 nos.		
		220kV line bays: 8 nos.	110 MVAR, 765 kV, 1 ph	
		765kV bus reactor along with	switchable Reactor (spare unit) -1	
		bays: 1no	(for both 1x 330 MVAr bus	
		400kV bus reactor along with	reactor and 1x330 MVAr line	
		bays: 1no	reactor on Ahmedabad – Indore	
		-	765 kV D/c line)	
	2.	Ahmedabad – Indore 765 kV D/c line	Length - 370	1733
	3.	2 no. of 765 kV line bays at	765 kV line bays – 2	40
		Indore for termination of	2	
		Ahmedabad – Indore 765 kV D/c		
		line		
	4.	330 MVAr, 765 kV switchable	330 MVAr, 765 kV Reactor - 4	132
		Line reactor for each circuit at	Switching equipments for 765 kV	
		both ends of Ahmedabad – Indore	reactor - 4	
		765 kV D/c line		
			80 MVAR, 765 kV, 1 line Reactor	
			(spare unit) at Ahmedabad end -1	
			(for 240 MVAr line reactor on	
			Kutch (Rapar) SEZ PP -	
			Ahmedabad 765kV D/c line)	
-			Total	2168

- Note: (i) Powergrid to provide space at Indore(PG) S/s for 2 nos. of 765kV line bays & space for 2 nos. of 330 MVAR Switchable Line reactors for termination of Ahmedabad – Indore 765 kV D/c line
 - (ii) Space for future provisions for 400 kV and 765 kV line bays to kept including the space for switchable line reactors.
- 6.1.3.1 NCT recommended the following:
 - i) Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ Part C to be implemented through TBCB route.
 - ii) The completion schedule for the scheme is December' 2021
 - iii) SECI to invite bids for setting up of Solar RE projects for the entire potential of 5 GW capacity in Rapar (3 GW injection at Rapar and 2 GW injection at Lakadia) and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme.
 - iv) For implementation purpose, Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ has been segregated into three packages namely, Part A, B and C and all needs to be implemented in the same time frame.

I/6436/2019 Name of the Scheme: Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ – Part C (Ahmedabad 400 kV interconnection).

SI.	Scope of the Transmission	Capacity /km	Estimated Cost
No.	Scheme		(in Rs Cr)
1.	LILO of Pirana(T) – Pirana(PG) 400kV D/c line at Ahmedabad with twin HTLS along with reconductoring of Pirana – Pirana(T) line with twin HTLS conductor	LILO route length – 44 Reconductoring length - 6	81.39
2.	4 nos. of 400 kV line bays at Ahmedabad for termination of LILO of Pirana(T) – Pirana(PG) 400kV D/c line at Ahmedabad with twin HTLS (with minimum capacity of 2100 MVA/ckt at nominal voltage)	400 kV line bays – 4	35.96
	~ /	Total	117.35

Note: Developer of Ahmedabad PS to provide space for 4 nos. of 400 kV line bays at Ahmedabad for termination of LILO of Pirana(T) – Pirana(PG) 400kV D/c line at Ahmedabad.

- 6.1.4.1 CTU stated that Pirana (T)- Pirana (PG) 400 kV D/c line is an existing line of Powergrid with Twin Moose conductor configuration and LILO of this line at Ahmedabad has been proposed with HTLS conductor. Therefore, reconductoring of the existing twin moose conductor with HTLS conductor would also be required.
- 6.1.4.2 After deliberations, NCT recommended the following:
 - i) Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ Part C (Ahmedabad 400 kV interconnection) to be implemented through RTM route, as it involves reconductoring as well as reconfiguration of an existing line.
 - ii) The scheme to be implemented in matching time frame of Transmission System for evacuation of power from RE projects in Rapar (3000 MW) and Lakadia (2000 MW) SEZ Part C
- 6.1.5 Name of the Scheme: Augmentation of transformation capacity at Lakadia PS for providing connectivity to RE projects (2000 MW) SEZ

Sl.	Scope of the Transmission	Capacity /km	Estimated Cost
No.	Scheme		(in Rs Cr)
1.	Augmentation of 765/400 kV	765/400 kV, 1500 MVA ICT – 1	247
	transformation capacity at	400/220 kV, 500 MVA ICT – 4	
	Lakadia PS by 1x1500MVA,		
	765/400kV ICT. Augmentation	765 kV ICT bays – 1	
	of 400/220 kV transformation	400 kV ICT bays – 5	
	capacity by 4x500MVA,	220 kV ICT bays – 4(GIS)	
	400/220kV ICTs (400kV AIS	220 kV line bays – 8 (GIS)	
	and 220kV GIS) for		
	interconnection with SEZ in		
	case of injection from RE		

File No.CEA-PS-11-15(11)/1/2018-PSPA-I Division

/6436/201	9	projects are at 220 kV level at	
		Lakadia	

6.1.5.1 CEA stated that Establishment of Lakadia 765/400 kV, 2x1500 MVA S/stn along with Bhuj PS – Lakadia PS 765 kV D/c line is being implemented as part of RE linked transmission scheme under Phase-I i.e. "Western Region Strengthening Scheme – 21 (WRSS-21) Part-A –

Transmission System strengthening for relieving overloading observed in Gujarat Intra-State System due to RE Injections in Bhuj PS". The same has already been awarded to M/s Adani Transmission Ltd with implementation timeframe of December' 2020.

In the 3rd meeting of NCT, the transmission scheme identified on potential basis under Phase-I i.e., "**Transmission System for providing connectivity to RE projects in Gujarat [Lakadia (2000 MW)]** for WEZ" which involved Establishment of 4x500 MVA, 400/220 kV ICTs at Lakadia PS (GIS) was agreed to be implemented through TBCB route.

The proposed scheme involves Augmentation of transformation capacity at Lakadia PS (already awarded) by 1x1500MVA, 765/400kV and 4x500MVA, 400/220 kV (400 kV AIS and 220 kV GIS) for enabling injection of power from SEZ in Rapar. The scheme of Establishment of 4x500 MVA, 400/220 kV ICTs at Lakadia PS (GIS) would enable injection of power from WEZ in Lakadia. The 400/220 kV transformation capacity augmentation at Lakadia would enable interconnection of entire 4 GW quantum of RE (Solar: 2 GW and Wind: 2 GW) at Lakadia PS.

- 6.1.5.2 After deliberations, NCT recommended the following:
 - i) Transmission Scheme "Augmentation of transformation capacity at Lakadia PS for providing connectivity to RE projects (2000 MW)" to be implemented through RTM route as it involves Upgradation of S/stn /addition of transformation capacity in under implementation S/stn.

S.No ·	Transmission system along with scope	Recomm . of 3 rd NCT	Modified scope	Recomm.of 4 th NCT
1.	TransmissionSystemforprovidingconnectivitytoREprojectsinGujarat[Lakadia(2000 MW)]Establishment of 4x500MVA,400/220kV ICTs at Lakadia PS(GIS)4x500MVA, 400/220kV400kV ICT bay-4220kV ICT bay-4220kV line bays -7	TBCB	Establishment of 4x500MVA, 400/220kV ICTs at Lakadia PS (400kV AIS and 220kV GIS) 4x500MVA,400/220kV 400kV ICT bay-4(AIS) 220kV ICT bay- 4 (GIS) 220kV line bays -7 (GIS)	RTM
2.	Augmentation of transformation capacity at Lakadia PS for providing connectivity to RE projects (2000 MW) SEZAugmentation of 765/400 kV transformation capacity at Lakadia	-	No Change	RTM

	File No.CEA-PS-11-15(11)/1/2018-PSPA-I Division	167
I/6436/2019	PS by 1x1500MVA, 765/400kV ICT. Augmentation of 400/220 kV transformation capacity by 4x500MVA, 400/220kV ICTs		
	(400kV AIS and 220kV GIS) for interconnection with SEZ in case of injection from RE projects are at 220 kV level at Lakadia		
	765/400 kV, 1500 MVA ICT – 1 400/220 kV, 500 MVA ICT – 4		
	765 kV ICT bays – 1 400 kV ICT bays – 5 220 kV ICT bays – 4(GIS) 220 kV line bays – 8 (GIS)		

ii) The completion schedule for both the scheme is December' 2021.

- iii) SECI to invite bids for setting up of Solar RE projects for the entire potential of 4 GW RE (2 GW solar in Rapar + 2 GW wind in Lakadiya) capacity whose injection has been planned at Lakadia and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme.
- 6.1.6 Name of the Scheme: Transmission System for evacuation of power from RE projects in Banaskantha (2500 MW) REZ. This scheme involves two parts namely, 400/220 kV ICT augmentation works at under construction Radhanesda PS substation by POWERGRID and associated lines. The scheme can be split into two parts as given below:

i) Transmission System for evacuation of power from RE projects in Banaskantha (2500 MW) REZ - Part A (Augmentation of transformation capacity at Radhanesda PS)

Sl.	Scope of the Transmission	Capacity /km	Estimated Cost
No.	Scheme		(in Rs Cr)
1.	Augmentation of	400/220 kV, 500 MVA ICT – 5	193
	transformation capacity at		
	Radhanesda PS by 5X500	400 kV ICT bays – 5	
	MVA, 400/220kV ICTs for	220 kV ICT bays – 5	
	interconnection with SEZ	220kV line bays- 9 nos	
		Total	193

ii) Transmission System for evacuation of power from RE projects in Banaskantha (2500 MW) REZ- Part B

Sl.	Scope of the Transmission	Capacity /km	Estimated Cost
No.	Scheme		(in Rs Cr)
1.	Radhanesda PS - Banaskantha	Length – 95	161
	400 kV D/c line (Twin HTLS)	Lengui 35	101
	(with minimum capacity of		
	2100 MVA/ckt at nominal		
	voltage)		
2.	2 no. of 400 kV line bays at	400 kV line bays -2	18
	Radhanesda for Radhanesda PS		10
	- Banaskantha 400 kV D/c line		
3.	Banaskantha –Zerda 400 kV	Length — 50	75
	D/c line	Length 50	15
4.	4 no. of 400 kV line bays at	$400 \mathrm{kV}$ line bays $= 4$	36
	Banaskantha	400 KV IIIC Days 4	50
	For both Radhanesda PS -		
	Banaskantha 400 kV D/c line		
	(Twin HTLS) and Banaskantha		
	–Zerda 400 kV D/c line		
5.	2 no. of 400 kV line bays at	400 kV line bays -2	18
	Zerda for Banaskantha –Zerda		10
	400 kV D/c line		
		Sub-total	308

Note: (a) Powergrid to provide space at Banaskantha (PG)765/400 kV S/s for 4 nos. of 400 kV line bays & space for 2 nos. 400 kV line bays at Radhaneshda PS.

(b) GETCO to provide space at Zerda 400/220 kV substation for 2 nos. 400 kV line bays (AIS/GIS).

6.1.6.1 CTU stated that 2X500 MVA, 400/220 kV S/stn at Radhanesda for evacuation of RE power from Radhanesda Ultra Mega Solar Park (700 MW) was already under implementation by Powergrid. The proposed scheme involves augmentation of transformation capacity by 5X500 MVA at Radhanesda 400/220 kV S/stn (under implementation) along with 9 no. of 220 kV line bays for evacuation of power from the entire 2.5 GW of RE potential in Banaskantha SEZ (out of 66.5 GW of RE projects to be implemented by December' 2021).

I/6436/2019.2 After deliberations, NCT recommended the following:

- Transmission System for evacuation of power from RE projects in Banaskantha (2500 MW) REZ-Part A (Augmentation of transformation capacity at Radhanesda PS) to be implemented through RTM route as it involves Upgradation of S/stn /addition of transformation capacity in under construction S/stn.
- ii) Transmission System for evacuation of power from RE projects in Banaskantha (2500 MW) REZ-Part B to be implemented through TBCB route
- iii) The completion schedule for both the scheme is December' 2021.
- iv) SECI to invite bids for setting up of Solar RE projects for the entire potential of 2.5 GW capacity in Banaskantha and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme.

6.1.7 Name of the Scheme: Transmission System for evacuation of power from RE projects in at Jamnagar (2500 MW) REZ.

Sl.	Scope of the Transmission	Capacity /km	Estimated Cost
No.	Scheme		(in Rs Cr)
1.	Establishment of 400/220 kV,	400/220 kV, 500 MVA ICT -	265
	5X500 MVA at Lalpur (Jamnagar)	5	
	SEZ PP with 400kV (125 MVAR)		
	bus reactor	400 kV ICT bays – 5	
		220 kV ICT bays – 5	
	<u>Future provisions</u> :	400 kV line bays – 6	
	Space for_	220kV line bays-9	
	400/220kV ICTs along with bays:		
	3 nos.	125 MVAr, 420 kV reactor	
	400kV line bays: 4 nos.	420 kV reactor bay – 1	
	220kV line bays: 6 nos		
	400kV bus reactor along with		
	bays: 1 no		
2.	Lalpur (Jamnagar) SEZ PP -	Lemeth 100	240
	Rajkot 400 kV 2xD/c line (Twin	Length - 100	540
	HTLS) (with minimum capacity of		
	2100 MVA/ckt at nominal voltage)		
3.	Lalpur (Jamnagar) SEZ PP – Jam	Length 50	85
	Khamabliya PS 400 kV D/c line	Length - 50	0.5
	(Twin HTLS) (with minimum		
	capacity of 2100 MVA/ckt at		
	nominal voltage)		
4.	2 no. of 400 kV line bays (GIS) at	400 kV (GIS) line have -2	27
	Jam Khamabliya PS for Lalpur	+00 KV (010) mit bays - 2	
	(Jamnagar) SEZ PP – Jam		
	Khamabliya PS 400 kV D/c line		
	(Twin HTLS)		

I/6436/2019) SI.	Scope of the Transmission	Capacity /km	Estimated Cost
	No.	Scheme		(in Rs Cr)
	6.	Establishment of 400kV switching	400 kV line bays – 10	107
		station at Rajkot with 420 kV (125		
		MVAR) bus reactor	125 MVAr, 420 kV reactor	
			420 kV reactor bay – 1	
		<u>Future provisions</u> :		
		Space for		
		400/220kV ICTs along with bays:		
		4 nos.		
		400kV line bays: 4 nos.		
		220kV line bays: 10 nos		
		400kV bus reactor along with		
		bays: 1no		
	7.	LILO of CGPL-Jetpur 400 kV	Route Length – 40	68
		D/C(triple) at Rajkot	Route Length To	00
	8.	Rajkot – Ahmedabad 400 kV D/c	Length -230	301
		line (Twin HTLS) (with minimum	Length – 250	571
		capacity of 2100 MVA/ckt at		
		nominal voltage)		
	9.	2 no. of 400 kV line bays at	400 kV line bays – 2	18
		Ahmedabad for Rajkot –		10
		Ahmedabad 400 kV D/c line (Twin		
		HTLS)		
	10	63 MVAr, 400 kV switchable line	63 MVAr, 420 kV Reactor - 4	46
		reactor on each circuit at both ends	Switching equipments for 400	
		of Rajkot – Ahmedabad 400 kV	kV reactor- 4	
		D/c line (Twin HTLS)		10.45
			Sub-total	1347

Note: (i) Developer of Jam Khamabliya PS to provide space for 2 no. of 400 kV line bays for termination of Lalpur (Jamnagar) SEZ PP – Jam Khamabliya PS 400 kV D/c line (Twin HTLS)

- (iii) Developer of Ahmedabad PS to provide space for 2 no. of 400 kV line bays and space for 2 no. of 63 MVAr, 400 kV switchable line reactor for termination of Rajkot Ahmedabad 400 kV D/c line (Twin HTLS).
- (iv) Space for future provisions for 400 kV line bays to kept including the space for switchable line reactors.

6.1.7.1 After deliberations, NCT recommended the following:

- i) The scheme to be implemented through TBCB route.
- ii) The completion schedule for the scheme is December' 2021
- iii) SECI to invite bids for setting up of Solar RE projects for the entire potential of 2.5 GW RE capacity in Jamnagar and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme.

6.1.8 Name of the Scheme: Transmission system for evacuation of power from RE projects in Sholapur (1000 MW under Ph-I+ 500 MW under Ph-II) SEZ and Osmanabad area (1 GW) in Maharashtra.

I/6436/2019

Sl.	Scope of the Transmission Scheme	Capacity /km	Estimated Cost		
No.			(Rs.) Cr.		
	Transmission system for evacuatio	on of power from RE projects	in Sholapur (1000		
	MW under Ph-I	+ 500 MW under Ph-II) SEZ			
1.	Establishment of 400/220 kV, 3x500 MVA at Solapur PP (near Mohol) Future Provisions: Space for 400/220 kV ICTs along with bays: 3 nos. 400 kV line bays: 6 nos. 220kV line bays: 5 nos. 400 kV bus reactor along with bays: 1 no.	500MVA, 400/220kV ICT -3 400kV ICT bay -3 220kV ICT bay -3 400kV line bay -2 220 kV line bays- 5	132		
2.	Solapur pooling point - Solapur (PG) 400 kV D/c line (twin HTLS) (with minimum capacity of 2100 MVA/ckt at nominal voltage)	50km	85		
3.	2 nos. of 400kV bays at Solapur PG for Solapur pooling point - Solapur (PG) 400 kV D/c line	400kV line bay -2	18		
4.	1x125 MVAR, 420 kV Bus Reactor at Solapur PP	1x125 MVAR, 420kV bus reactor 420kV reactor bay	18		
		Sub Total Rs (in Crore)	253		
	Transmission system for evacuation	of power from RE projects i	n wind energy zones		
	in Osmanabad area of Maharashtra (1 GW)				
1.	Establishment of 2x500MVA, 400/220kV near Kallam PS Future Provisions: Space for	2x500MVA, 400/220kV 400kV ICT bay-2 220kV ICT bay-2 400kV line bay-4	179		

I/6436/201	9	400/220 kV ICTs along with bays: 4	220kV line bay- 4	
		nos.		
		400 kV line bays: 6 nos.		
		220kV line bays: 7 nos.		
		400 kV bus reactor along with bays: 1 no.		
	2.	1x125MVAr bus reactor at Kallam PS	1x125 MVAr 400kV reactor bay -1	18
	3.	LILO of both circuits of Parli(PG) – Pune(GIS) 400kV D/c line at Kallam PS	10km	55
	4.	Provision of new 50MVAr switchable line reactor at Kallam PS end of Kallam – Pune(GIS) 400kV D/c line	2x50 MVAr 400kV Reactor bays -2	30
			Sub Total Rs (in Crore)	245
			Total	527

<u>Note:</u>

- a. The line lengths mentioned above are approximate as the exact length shall be obtained after the detailed survey.
- b. Powergrid to provide space for 2 nos. of 400kV bays at Solapur PG for termination of Solapur pooling point Solapur (PG) 400 kV D/c line.
- c. Space for future provisions for 400 kV line bays to kept including the space for switchable line reactors.
- 6.1.8.1 CEA stated that **Transmission system for evacuation of power from RE projects in Sholapur** (1000 MW under Ph-I+ 500 MW under Ph-II) SEZ and Osmanabad area (2 GW) in Maharashtra has been discussed in 2nd and 3rd meeting of NCT held on 04.12.2018 and 01.03.2019 respectively. The schemes were agreed to be implemented through TBCB route only after receipt of connectivity/ LTA applications from RE generation developers/SECI. Subsequently, the schemes were further discussed in 2nd meeting of WRSCT held on 21.05.2019, wherein it was agreed that in view of evacuation system for 1 GW of RE projects being planned by MSETCL, the capacity of Kallam 400/220 kV Pooling Station agreed as part of ISTS (under Ph-I) to be reduced to 1000 MW (from 2000 MW already planned) as the total potential identified in Osmanabad area was only 2 GW.
- 6.1.8.2 After deliberations, NCT recommended the following:
 - i) Transmission system for evacuation of power from RE projects in Sholapur (1000 MW under Ph-I + 500 MW under Ph-II) SEZ and Osmanabad area (1 GW) in Maharashtra to be implemented through TBCB route.
 - ii) The completion schedule for the scheme is December' 2021

- I/6436/2019 iii) SECI to invite bids for setting up of Solar RE projects for the entire potential of 1.5 GW in Solapur and 2 GW wind RE capacity in Jamnagar in similar time frame and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme.
 - 6.1.9 Name of the Scheme: Transmission system for evacuation of power from RE projects in wind energy zones in Osmanabad area of Maharashtra (1 GW) Conversion of 50MVAr fixed Line Reactors on each ckt of Parli (PG) Pune (GIS) 400kV D/c line at Parli (PG) end into switchable line reactors

Sl. No.	Scope of the Transmission Scheme	Capacity /km	Estimated Cost (Rs.) Cr.
1	Conversion of 50MVAr fixed Line Reactors on each ckt of Parli (PG) – Pune (GIS) 400kV D/c line at Parli (PG) end into switchable.	400kV Reactor bays -2	19

- 6.1.9.1 After deliberations, NCT recommended the following:
 - i) Conversion of 50MVAr fixed Line Reactors on each ckt of Parli (PG) Pune (GIS) 400kV D/c line at Parli (PG) end into switchable line reactors to be implemented through RTM route, as it qualifies under technical upgradation of an existing transmission facility.
 - ii) The scheme to be implemented in matching time frame of Transmission system for evacuation of power from RE projects in wind energy zones in Osmanabad area of Maharashtra (1 GW)
- 6.1.10 Name of the Scheme: Transmission system for evacuation of power from RE projects in Wardha (2500 MW) SEZ in Maharastra

Sl.	Scope of the Transmission	Capacity /km	Estimated Cost (in Rs
No.	Scheme		Cr)
1.	Establishment of 400/220 kV,	400/220 kV, 500 MVA ICT	247
	5X500 MVA at Wardha SEZ PP	- 5	
	with 400kV (125 MVAR) bus		
	reactor	400 kV ICT bays – 5	
		220 kV ICT bays – 5	
	Future provisions: Space for	400 kV line bays – 4	
	400/220kV ICTs along with	220 kV line bays - 9	
	bays: 3 nos.		
	400kV line bays: 6 nos.	125 MVAr, 420 kV reactor	
	220kV line bays : 6 nos	420 kV reactor bay – 1	
	400kV bus reactor along with		
	bays: 1no		
2.	LILO of Wardha - Warora Pool	Length 85	210.84
	400 kV D/c (Quad) line at	Lengui - 85	219.84
	Wardha SEZ PP		
		Total	467

I/6436/2019

- (i) Space for future provisions for 400 kV line bays to kept including the space for switchable line reactors.
- 6.1.10.1 After deliberations, NCT recommended the following:
 - i) Transmission system for evacuation of power from RE projects in Wardha (2500 MW) SEZ in Maharashtra to be implemented through TBCB route.
 - ii) The completion schedule for the scheme is December' 2021
 - iii) SECI to invite bids for setting up of Solar RE projects for the entire potential of 2.5 GW in Wardha in Maharashtra and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme
 - 6.1.11 Name of the Scheme: Transmission system for evacuation of power from RE projects in Rajgarh (2500 MW) SEZ in Madhya Pradesh

Sl.	Scope of the Transmission	Capacity /km	Estimated Cost (in Rs
No.	Scheme		Cr)
1.	Establishment of 400/220 kV,	400/220 kV, 500 MVA ICT	247
	5X500 MVA at Rajgarh SEZ	- 5	
	PP with 420kV (125 MVAR)		
	bus reactor	400 kV ICT bays – 5	
		220 kV ICT bays – 5	
	Future provisions:	400 kV line bays – 4	
	Space for	220 kV line bays - 9	
	400/220kV ICTs along with		
	bays: 3 nos.		
	400kV line bays: 6 nos.	125 MVAr, 420 kV reactor	
	220kV line bays: 6 nos	420 kV reactor bay – 1	

File No.CEA-PS-11-1	5(11)/1/2018-PSPA-I	Division
---------------------	------	-----------------	----------

1/6436/2019	400kV bus reactor along with		
	bays: 1 no		
2.	Rajgarh SEZ PP -Bhopal (Sterlite) 400 kV D/c line	Length – 130	220.78
	capacity of 2100 MVA/ckt at nominal voltage)		
3.	2 no. of 400 kV line bays at Bhopal (Sterlite) for Rajgarh SEZ PP -Bhopal (Sterlite) 400 kV D/c line (HTLS) (with minimum capacity of 2100 MVA/ckt at nominal voltage)	400 kV line bays – 2	17.98
4.	Rajgarh SEZ PP – Shujalpur 400 kV D/c line (HTLS) (with minimum capacity of 2100 MVA/ckt at nominal voltage)	Length -80	135.86
5.	2 no. of 400 kV line bays at Shujalpur for Rajgarh SEZ PP – Shujalpur 400 kV D/c line (HTLS) (with minimum capacity of 2100 MVA/ckt at nominal voltage)	400 kV line bays – 2	17.98
		Total	640

- Note: (i) M/s BDTL (Bhopal Dhule Transmission Company Limmited) to provide space for 2 no. of 400 kV line bays at Bhopal (Sterlite) for termination of Rajgarh SEZ PP -Bhopal (Sterlite) 400 kV D/c line.
 - (ii) Powergrid to provide space for 2 no. of 400 kV line bays at Shujalpur for termination of Rajgarh SEZ PP Shujalpur 400 kV D/c line.
 - *(iii)* Space for future provisions for 400 kV line bays to kept including the space for switchable line reactors.
- 6.1.11.1 After deliberations, NCT recommended the following:
 - i) Transmission system for evacuation of power from RE projects in Rajgarh (2500 MW) SEZ in Madhya Pradesh to be implemented through TBCB route.
 - ii) The completion schedule for the scheme is December' 2021
 - iii) SECI to invite bids for setting up of Solar RE projects for the entire potential of 2.5 GW in Rajgarh in Madhya Pradesh and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme.
- 6.1.12 Name of the Scheme: Transmission system for evacuation of power from RE projects in Khandwa (2500 MW) in Madhya Pradesh

I/6436/201	9 Sl.	Scope of the Transmission	Capacity /km	Estimated Cost (in Rs	
	No.	Scheme		Cr)	
	1.	Establishment of 400/220 kV,	400/220 kV, 500 MVA ICT	247	
		5X500 MVA at Khandwa	- 5		
		SEZ PP with 420kV (125			
		MVAR) bus reactor	400 kV ICT bays – 5		
			220 kV ICT bays – 5		
		Future provisions:	400 kV line bays – 4		
		Space for	220 kV line bays - 9		
		400/220kV ICTs along with			
		bays: 3 nos.			
		400kV line bays: 6 nos.	125 MVAr, 420 kV reactor		
		220kV line bays: 6 nos	420 kV reactor bay – 1		
		400kV bus reactor along with	_		
		bays: 1no			
Γ	2.	Khandwa SEZ PP - Khandwa	Length 100	170	
		Pool 400 kV 2XD/c line	Lengui – 100	170	
		(Twin HTLS) (with minimum			
		capacity of 2100 MVA/ckt at			
		nominal voltage)			
	3.	4 no. of 400 kV line bays at	400 kV line have 4	26	
		Khandwa Pool for Khandwa	400 KV line bays -4	30	
		SEZ PP - Khandwa Pool			
		2XD/c line (Twin HTLS)			
		, , , , , , , , , , , , , , , , , , ,			
-			Total	453	

FILE NEEDER DO 44 45/44/4/0040 DODA L Division

- Note: (i) *M/s KTL* (*Khargone Transmission Limited*) to provide space for 4 no. of 400 kV line bays at Khandwa Pool (Sterlite) for termination of Khandwa SEZ PP Khandwa Pool 2xD/c line.
 - *(ii)* Space for future provisions for 400 kV line bays to kept including the space for switchable line reactors.
- 6.1.12.1 After deliberations, NCT recommended the following:
 - Transmission system for evacuation of power from RE projects in Khandwa (2500 MW) in Madhya Pradesh to be implemented through TBCB route.
 - ii) The completion schedule for the scheme is December' 2021.
 - iii) SECI to invite bids for setting up of Solar RE projects for the entire potential of 2.5 GW in Khandwa in Madhya Pradesh and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme.
- 6.1.13 Name of the Scheme: Transmission system for evacuation of power from RE projects in Khandwa (2500 MW) in Madhya Pradesh ICT augmentation at Khandwa Pool

Sl.	Scope of the Transmission	Capacity /km	Estimated Cost (in Rs
No.	Scheme		Cr)
1.	Augmentation of 1X1500	765/400 kV, 1500 MVA ICT	72.79
	MVA, 765/400kV ICT at	-1	
	Khandwa Pool (Sterlite)	765 kV ICT Bays- 1	

	File No.CEA-PS-11-15(11)/1/2018-PSPA-I Division						
I/6436/2019		400 kV ICT Bays -1					
		Total	72.79				

- 6.1.13.1 After deliberations, NCT recommended the following:
 - i) **ICT augmentation at Khandwa Pool** to be implemented through RTM route, as it involves Upgradation of an existing S/stn /addition of transformation capacity in an existing S/stn.
 - ii) The scheme to be implemented in matching time frame of Transmission system for evacuation of power from RE projects in Khandwa (2500 MW) in Madhya Pradesh.
 - 6.1.14 Name of the Scheme: Transmission System for providing immediate connectivity to Dholera UMSP (4000 MW)

Sl.	Scope of the Transmission	Capacity /km	Estimated Cost (in Rs
No.	Scheme		Cr)
1.	Establishment of 765/400kV,	765/400 kV, 1500 MVA ICT	469
	3X1500 MVA at Dholera	- 3	
	Pooling station		
	with 765kV (1x330MVAR)	765/400 kV, 500 MVA spare	
	and 400kV (125 MVAR) bus	ICT (1-phase) – 1	
	reactor		
		765 kV ICT bays – 3	
		400 kV ICT bays – 3	
		765 kV line bays – 6	
		400 kV line bays - 6	
		330 MVAr, 765 kV reactor	
		125 MVAr, 420 kV reactor	
		765 kV reactor bay – 1	

I/6436/2019		420 kV reactor bay – 1	
2	. LILO of Lakadia – Vadodara 765 kV D/c line at Dholera UMSP	110 MVAR, 765 kV, 1 ph Reactor (spare unit) -1 LILO Route Length -80	375
3	. Dholera UMSP – Ahmedabad 765kV D/c line	Length - 100	468
	. 2 no. of 765 kV line bays at Ahmedabad for termination of Dholera UMSP – Ahmedabad 765kV D/c line	765 kV line bays – 2	40
5	. 765 kV, 240 MVAr switchable line reactor at Dholera PS end on each circuit of Dholera – Ahmedabad 765kV D/c line	 240 MVAr, 765 kV line Reactor- 2 Switching equipments for Line Reactor- 2 1x80 MVAr, 765 kV switchable line reactor (1-ph), spare unit – 1 (at Dholera end) 	64
		Total	1416

DO 44 45/44 MARCAD DODA ID

- *Note: Developer of Ahmedabad PS to provide space for 2 no. of 765 kV line bays at Ahmedabad for termination of Dholera UMSP Ahmedabad 765kV D/c line*
- 6.1.14.1 CEA stated that Dholera Ultra Mega Solar Park (5000 MW) is being implemented by **Gujarat** Power Corporation Limited. Dholera UMSPP has been split into two different projects :

Dholera UMSPP (Phase -I): 1000 MW Solar Power Park would be developed by Gujarat Power Corporation Limited (GPCL). The scheme of power evacuation would be carried out by GETCO.

Dholera UMSPP (Phase - II): 4000 MW would be developed by Solar Energy Corporation of India(SECI) . SECI would act as SPPD and would apply for LTA to CTU.

- 6.1.14.2 CEA further stated that this 4 GW capacity to be integrated at Dholera PS would be in addition to 66.5 GW RE capacity (50 solar + 16.5 GW wind).
- 6.1.14.3 After deliberations, NCT recommended the following:
 - Transmission System for providing immediate connectivity to Dholera UMSP (4000 MW) to be implemented through TBCB route.
 - ii) Implementation of the transmission scheme to be taken up only after receipt of connectivity/LTA applications from the SPPD
 - iii) The completion schedule for the scheme is December' 2021 or SCOD of RE project, whichever is later.

1/6436/2019 Name of the Scheme: Conversion of 80 MVAr fixed line reactor at Boisar end of Aurangabad- Boisar 400 kV D/c line to switchable line reactor alongwith NGR bypass arrangement

6.2.1 MSETCL's proposal for "Establishment of 400/220 kV Intra State substation at Pimpalgaon (Nashik) by MSETCL" was agreed in the 2nd meeting of WRSCT held on 21.05.2019. The above proposal inter-alia involves LILO of Aurangabad-Boisar 400 kV D/C quad line at proposed 400/220 kV, 2X500 MVA Pimpalgaon S/stn , which is an ISTS line. With LILO Boisar-Pimpalgaon section length gets reduced and the associated line reactors at Boisar were agreed to be converted to switchable. Accordingly, the following transmission element under the scheme was agreed to be implemented as Inter State Transmission Scheme:

Sl. No.	Scope of the Transmission Scheme	Capacity	Estimated Cost (Rs.) Cr
2	*Conversion of 80 MVAr fixed line reactor at Boisar end of Aurangabad- Boisar 400 kV D/c line to switchable line reactor alongwith NGR bypass arrangement	400 kV Switching equipments for line reactor-2	8.9

- 6.2.2 NCT recommended the implementation of the above scheme through RTM, as it qualifies under technical upgradation of an existing transmission facility.
 - 6.3 Name of the Scheme: Connectivity system for NTPC Lara STPP 2x800MW Stage-II generation project
- 6.3.1 The transmission scheme "Connectivity system for NTPC Lara STPP 2x800MW Stage-II generation project" was agreed in the 2nd meeting of WRSCT held on 21.05.2019. The transmission scheme inter-alia includes the following transmission element to be implemented under ISTS:

Sl. No.	Scope of the Transmission Scheme	Capacity /ckm	Estimated Cost (Rs.) Cr.
	Reconductoring of Lara STPP I – Raigarh (Kotra) 400kV D/c line with HTLS conductor (Quad	20	30
	Moose capacity)		
	Total Rs (in Crore)		

6.3.2 NCT recommended the implementation of the above scheme through RTM as it involves Reconductoring of an existing line.

6.4 Name of the Scheme: Navsari (PG) – Bhestan/Popada (GETCO) 220 kV D/C line

6.4.1 Navsari (PG) – Bhestan/Popada (GETCO) 220 kV D/C line was planned as a part of the transmission scheme "Transmission System associated with DGEN TPS (1200 MW) of Torrent Power Ltd." which was awarded to M/s Instalaciones Inabensa through TBCB route. The implementation schedule of the scheme was 38 months i.e. May, 2018. M/s DGENTPL has not taken up the implementation of the scheme. The issue of non-implementation of scheme by M/s DGENTPL has been deliberated in earlier standing committee meetings as well as separate meetings.

- **I/6436/2019** In the 2nd meeting of WRSCT held on 21.05.2019, in view of consistent overloading observed on Vav-Popadiya/Sachin-Navsari (GETCO) Navsari (PGCIL) 220 kV lines, members agreed to delink the line from "Transmission System associated with DGEN TPS (1200 MW) of Torrent Power Ltd." and take up the implementation of Navsari (PG) Bhestan 220 kV D/C line as a separate ISTS scheme.
 - 6.4.3 The scope of works of the transmission scheme is as follows:

Sl. No.	Scope of the Transmission Scheme	Capacity /ckm	Estimated Cost (Rs.) Cr.
1.	Navsari (PG) – Bhestan 220 kV D/C line (with minimum capacity of 400MVA per circuit)	40	23
2.	Associated 220 kV line bays at Navsari 400/220 kV (PGCIL) substation and Bhesthan 220 kV substation has already been implemented by POWERGRID and GETCO respectively.		
	Total Rs (in Crore)		23

- 6.4.4 Expert Members enquired about the status of the ISTS Licensee M/s DGENTPL. CTU informed the CERC has already cancelled the transmission license granted to M/s DGENTPL.
- 6.4.5 After deliberations, NCT recommended the following:
 - Navsari (PG) Bhestan/Popada (GETCO) 220 kV D/C line to be implemented through RTM route, as it is required on urgent basis to cater to overloading observed on Vav-Popadiya/Sachin-Navsari (GETCO)- Navsari (PGCIL) 220 kV lines.

I/6436/2019 ii) Implementation time frame: 10 months from the date of issue of OM by MoP allocating the project under RTM.

7. New Inter-State Transmission Schemes in Southern Region

7.1 CEA stated that Transmission system for evacuation of power from Phase-II Solar Energy Zones in Andhra Pradesh and Karnataka were agreed to be implemented as ISTS system in the 2nd SRSCT meeting held on 10.06.2019 at Bengaluru.

While approving these schemes, the SRSCT mentioned that these transmission system are a broad master plan to serve integration of RE generation potential assessed in Tamil Nadu, Karnataka and Andhra Pradesh for period upto 2021-22. As such, it was agreed that the scheme would be implemented as ISTS, consequent to grant of LTA by CTU. The transformation capacity at various sub-stations and certain elements may be required to be reviewed based on LTA applications.

7.1.1 Name of the Scheme: Transmission scheme for Solar Energy Zone in Ananthpuram (Ananthapur) (2500 MW) and Kurnool (1000 MW), Andhra Pradesh

Sl.	Scope of the Transmission Scheme	Capacity /km	Cost
No.			
1.	Establishment of 400/220 kV, 7x500 MVA pooling station at suitable border	400/220 kV, 500 MVA ICT – 7	339.46
	location between Ananthpuram &	400 kV ICT bays – 7	
	Kurnool Distt with 400kV (2x125	220 kV ICT bays - 7	
	MVAR) bus reactor	400 kV line bays -4	
	, ,	220 kV line bays – 12	
	Future provisions: Space for	5	
	$\frac{1}{400/220 \text{kV ICTs along with bays: 1 nos.}}$	125 MVAr, 420 kV reactor - 2	
	400kV line bays: 6 nos.	420 kV reactor bay -2	
	220kV line bays: 4 nos.		
2.	Ananthpuram PS-Kurnool-III PS 400 kV	Length – 100	169.83
	(High capacity equivalent to quad moose)		109.05
	D/c Line		
3.	400 kV line bays at Kurnool-III PS for	400 kV line bays – 2	17.98
	Ananthpuram PS-Kurnool-III PS 400 kV		
	D/c line		
1	Anonthrourom DS Cuddonah 400 kV		
4.	(High consoity equivalent to guid moose)	Length - 150	254.75
	D/c Line		
5.	400 kV line bays Cuddapah PS for	$400 \mathrm{kV}$ line bays -2	17.08
	Ananthpuram PS-Cuddapah 400 kV	400 kV fine bays -2	17.90
6	80 MVAr 420 KV switchable line reseter		
0.	for Ananthnuram PS-Cuddanah 400 kV	420 kV, 80 MVAr reactor – 2	8.91
	D/c line	nos.	
		Switching equipments for line	
		reactor- 2	
		Total	823

- **I/6436/2019***ote:* (i) Developer of Kurnool PS to provide space for 2 no. of 400 kV line bays at Kurnool PS for termination of Ananthpuram PS-Kurnool-III PS 400 kV (High capacity equivalent to quad moose) D/c Line.
 - (ii) Powergrid to provide space for 2 no. of 400 kV line bays at Cuddapah PS for termination of Ananthpuram PS-Cuddapah 400 kV (High capacity equivalent to quad moose) D/c Line.
 - *(iii)* Space for future provisions for 400 kV and 765 kV line bays to kept including the space for switchable line reactors.

- 7.1.1.1 NCT recommended the following:
 - i) Transmission scheme for Solar Energy Zone in Ananthpuram (Ananthapur) (2500 MW) and Kurnool (1000 MW), Andhra Pradesh to be implemented through TBCB route.
 - ii) The completion schedule for the scheme is December' 2021.
 - iii) SECI to invite bids for setting up of Solar RE projects for the entire potential of 2.5 GW in Ananthpuram (Ananthapur) and 1 GW in Kurnool, Andhra Pradesh and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme

1/6436/2019 Name of the Scheme: Transmission Scheme for Solar Energy Zone in Gadag (2500 MW), Karnataka – Part A

Sl.	Scope of the Transmission	Capacity /km	Cost in Rs cr.
No.	Scheme	L V	
1.	Establishment of 400/220 kV,	400/220 kV, 500 MVA ICT – 5	243
	5x500 MVA Gadag Pooling		
	Station with 400kV (1x125	400 kV ICT bays – 5	
	MVAR) bus reactor	220 kV ICT bays – 5	
		400 kV line bays – 4	
	Future provisions: Space for	220 kV line bays – 8	
	400/220kV ICTs along with		
	bays: 1 nos.	125 MVAr, 420 kV reactor - 1	
	400kV line bays: 6 nos.	420 kV reactor bay – 1	
	220kV line bays: 4 nos		
2.	Gadag PS-Koppal PS 400 kV	Length – 60	102
	(high capacity equivalent to		
	quad moose) D/C Line		
3.	400 kV line bays at Koppal PS	400 kV line bays – 2	18
	for Gadag PS-Koppal PS 400		
	kv D/c line		
	Codag DS Narandra (Navy) DS		
4.	400 kV (high conscitu	Length - 100	170
	equivalent to quad mode) D/C		
	Line		
5	400 kV line bays at Narendra		
	(new) for Gadag PS-Narendra	400 kV line bays – 2	18
	(New) PS 400 kV D/c line		
		Total	551

Note: (i) Developer of Koppal PS to provide space for 2 no. of 400 kV line bays at Koppal PS for termination of Gadag PS-Koppal PS 400 kV (high capacity equivalent to quad moose) D/C Line.

(*ii*) Powergrid to provide space for 2 no. of 400 kV line bays at Narendra (New)400 kV substation for termination of Gadag PS- Narendra (New) 400 kV (high capacity equivalent to quad moose) D/C Line.

- 7.1.2.1 After deliberations, NCT recommended the following:
 - i) **Transmission Scheme for Solar Energy Zone in Gadag (2500 MW), Karnataka** to be implemented through TBCB route.
 - ii) The completion schedule for the scheme is December' 2021.
 - iii) SECI to invite bids for setting up of Solar RE projects for the entire potential of 2.5 GW in Gadag, Karnataka and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme.
- 7.1.3 Name of the Scheme: Transmission Scheme for Solar Energy Zone in Gadag (2500 MW), Karnataka – Part B

Sl.	Scope of the Transmission	Capacity /km	Cost in Rs cr.
No.	Scheme		
1.	Upgradation of Narendra	765/400 kV, 1500 MVA ICT – 2	245.74
	(New) to its rated voltage of		
	765 kV level along with	765 kV ICT bays – 2	
	2x1500 MVA, 765/400 kV	400 kV ICT bays – 2	
	transformer and 765 kV,	765 kV line bays – 2	
	1x330 MVAr Bus Reactor		
		330 MVAr, 765 kV reactor - 1	
		765 kV reactor bay – 1	
		500 MVA/ 765/400 kV 1-phase ICT	
		(spare unit) – 1	
		110 MVAR, 765 kV, 1 ph Reactor	
		(spare unit) -1 (for both the bus reactor	

	File No.CEA-PS-11-15(11)/1/2018-PSPA-I Division					
I/6436/201	9		and 1X330 MVAr line reactor on Madhugiri (Tumkur) - Narendra New 765 kV D/c line)			
	2.	Upgradation of Kolhapur (PG) to its rated voltage of 765 kV level alongwith 2x1500 MVA, 765/400 kV transformer and 765 kV, 1x330 MVAr Bus Reactor	765/400 kV, 1500 MVA ICT – 2 765/400 kV, 1500 MVA ICT – 2 765 kV ICT bays – 2 765 kV line bays – 2 330 MVAr, 765 kV reactor - 1 765 kV reactor bay – 1 500 MVA/ 765/400 kV 1-phase ICT (spare unit) – 1 110 MVAR, 765 kV, 1 ph Reactor (spare unit) -1 (for both the bus reactor and 1X330 MVAr line reactor on Narendra new – Kolhapur (PG) 765 kV D/c line)	245.74		
	3.	Upgradation/charging of Narendra new - Kolhapur (PG) 765 kV D/c line (initially charged at 400 kV) to its rated voltage of 765 kV				
	4.	1x330 MVAr, 765 KV switchable Line Reactor on Kolhapur (PG) end of each circuit of Narendra new - Kolhapur (PG) 765 kV D/c line	765 kV, 330 MVAr line reactor - 2 nos.Switching equipments for line reactor-2	62.37		
			Total	554		

- 7.1.3.1 NCT recommended the implementation of the above scheme through RTM as it involves upgradation of an existing S/stn from 400 kV level to 765 kV level and charging of the lines at 765 kV level (at present 765 kV lines are charged at 400 kV level). The scheme to be completed in matching time frame of Evacuation system for RE projects in Gadag and Koppal RE potential zones.
- 7.1.4 **Name of the scheme:** Transmission Scheme for Solar Energy Zone in Bidar (2500 MW), Karnataka

Sl.	Scope of the Transmission	Capacity /ckm	Cost in Rs
No.	Scheme		cr.
1	Establishment of	1500MVA, 765/400kV- 3 500MVA,	520.65
	3x1500MVA (765/400kV),	400/220kV- 5	
	5x500MVA (400/220kV)	765kV ICT bay-3	
	station at suitable border	400kV ICT bay-8	
	location near Bidar.with	220kV ICT bay- 5	
	765kV (1x240 MVAR) and	765kV line bay-2	
	400kV (1x125 MVAR) bus	220kV line bays -8	
	reactor		
		1x240MVAr, 765kV - 1	
	Future provisions: Space for	1x125MVAr, 420kV - 1	
	765/400kV ICTs along with		

	File No.CEA-PS-11	-15(11)/1/2018-PSPA-I Division	
I/6436/2019	bays: 1 no. 400/220kV ICTs along with bays: 2 nos. 765kV line bays: 6 nos. 400kV line bays: 8 nos. 220kV line bays: 4 nos. 765kV bus reactor along with bays: 1 no	 765kV reactor Bay -1 400kV reactor Bay -1 1x500 MVA, 765/400 kV, 1-ph ICT (spare unit) - 1 1x80 MVAR, 765 kV, 1 ph Reactor (spare unit) - 1 (for both bus reactor and 240 MVAr line reactor of Bidar PS – Maheshwaram (PG) 765 kV D/C line) 	
2	2 Bidar PS – Maheshwaram (PG) 765 kV D/C line	Length - 160	749.47
	 765 kV line bays at Maheshwaram (PG) for termination of Bidar PS – Maheshwaram (PG) 765 kV D/C line 	765 kV line bays - 2	40.03
	4 765kV, 1X240MVAr switchable Line reactor for each circuit at Bidar PS end of Bidar PS – Maheshwaram (PG) 765 kV D/C line	240 MVAR, 765 kV line reactor – 2 Switching equipments for line reactor- 2	57.38
		Total	1367.52

186

Note:(ii) Powergrid to provide space for 2 no. of 765 kV line bays at Maheshwaram 765 kV substation for termination of Bidar PS – Maheshwaram (PG) 765 kV D/C line.

- 7.1.4.1 After deliberations, NCT recommended the following:
 - i) **Transmission Scheme for Solar Energy Zone in Bidar (2500 MW), Karnataka** to be implemented through TBCB route.
 - ii) The completion schedule for the scheme is December' 2021.
 - SECI to invite bids for setting up of Solar RE projects for the entire potential of 2.5 GW in Bidar, Karnataka and ensure that entire capacity is bid out to avoid underutilization/ non-utilization of ISTS scheme.
- 7.1.5 **Name of the Scheme:** Common transmission system strengthening in Southern Region for enabling evacuation and export of power from Solar & Wind Energy Zones in Southern Region"

Sl	Scope of the Transmission Scheme	Capacity / ckm / nos.	Estimated
no			Cost (Rs.
			Cr.)
1.	(i) Upgradation of Tuticorin PS to its rated	1500MVA, 765/400kV - 6	1202
	voltage of 765kV level alongwith 2x1500		
	MVA, 765/400kV ICTs and 1x330 MVAr,	765kV ICT bay-6	
	765kV Bus Reactor	400kV ICT bay-6	
	(ii) Upgradation of Dharmapuri (Salem New)	765kV line bay-12	
	to its rated voltage of 765kV level	330 MVAr reactor-1	

4 E (4 4) /4 /2040 DODA ID:

I/6436/201	9 81	Scope of the Transmission Scheme	Capacity / ckm / nos.	Estimated
	no			Cost (Rs.
		 alongwith 2x1500 MVA, 765/400kV ICTs and 1x240 MVAr, 765kV Bus Reactor (iii) Upgradation of Madhugiri (Tumkur) to its rated voltage of 765kV level alongwith 2x1500 MVA, 765/400kV ICTs and 1x240 MVAr, 765kV Bus Reactor (iv) Upgradation/ charging of Tuticorin PS - Dharmapuri (Salem New) 765 kV D/c line (initially charged at 400 kV) to its rated voltage of 765 kV along with 1x330 MVAr switchable Line Reactor on both end of each circuit. (v) Upgradation/charging of Dharmapuri (Salem New) - Madhugiri (Tumkur) 765 kV 2xS/c line (initially charged at 400 kV) to its rated voltage of 765 kV along with 1x330 MVAr switchable Line Reactor on Dharampuri (Salem New) end of both circuits (vi) Upgradation/ charging of Madhugiri (Tumkur) - Narendra New 765 kV D/c line (initially charged at 400 kV) to its rated voltage of 765 kV along with 1x330 MVAr switchable Line Reactor on Dharampuri (Salem New) end of both circuits (vi) Upgradation/ charging of Madhugiri (Tumkur) - Narendra New 765 kV D/c line (initially charged at 400 kV) to its rated voltage of 765 kV along with 1x330 MVAr switchable Line Reactor on both end of each circuit. (vii) Conversion of 400 kV Line Reactors installed on 765 kV circuits/ lines (initially charged at 400 kV) mentioned at Sl No. iv, v and vi into 400 kV bus Reactor with suitable arrangements at respective substations. 	 240 MVAr reactor-2 330 MVAr LR-10 Switching equipments for 330 MVAr LR – 10 765kV bus reactor bay-3 400kV bus reactor bay-10 Spare for Tuticorin PS : 1x500 MVA, 765/400 kV, 1-ph ICT (spare unit) 1x110 MVAR, 765 kV, 1 ph. Switchable reactor (spare unit) (for 330 MVAr line/bus reactor) Spare for Dharmapuri (Salem New): 1x500 MVA, 765/400 kV, 1-ph ICT (spare unit), 1 ph. Switchable reactor (spare unit) (for 330 MVAr line reactor) & Spare for Dharmapuri (Salem New): 1x500 MVA, 765/400 kV, 1-ph ICT (spare unit), 1 ph. Switchable reactor (spare unit) (for 330 MVAr line reactor) & 1x80 MVAR, 765 kV, 1<ph. (spare="" li="" reactor="" switchable="" unit)<=""> (for 240 MVAr bus reactor) Spare for Madhugiri (Tumkur): 1x500 MVA, 765/400 kV, 1-ph ICT (spare unit), 1 ph. Switchable reactor (spare unit) (for 240 MVAr bus reactor) Spare for Madhugiri (Tumkur): 1x500 MVA, 765/400 kV, 1-ph ICT (spare unit), 1 ph. Switchable reactor (spare unit) (for 330 MVAr bus reactor) </ph.>	Cost (Rs. Cr.)
	1	1	Total	1202

7.1.5.1 NCT recommended the implementation of the above scheme through RTM as it involves upgradation of an existing S/stn from 400 kV level to 765 kV level and charging of the lines at 765 kV level(at present 765 kV lines are charged at 400 kV level).

File No.CEA-PS-11-15(11)/1/2018-PSPA-I Division I/6436/20719 Name of the scheme: Transmission system for controlling high Short Circuit Current level at 765/400 kV Thiruvalam S/s

7.2.1 The scheme has been agreed in the 2nd SRSCT for controlling fault level at 400 kV bus of Thiruvalam substation

Sl	Scope of the Transmission Scheme	Capacity /	Estimated
no		ckm	Cost (Rs.
			Cr.)
2.	a) 12 Ω , 420 kV fault limiting bus series reactors between:		80
	 Bus section-A and bus section-B 		
	 Bus Section-B and bus section-C 		
	b) Opening of the one of the bus (other than on which fault		
	limiting bus series reactors are being installed) between the		
	above mentioned bus sections through suitable arrangement.		
	c) Bypass of Kolar-Thiruvalam and Thiruvalam-Sriperumbudur		
	400 kV S/c line to form Kolar – Sriperumbudur 400 kV S/c		
	direct line.		

7.2.2 NCT recommended the implementation of the above scheme through RTM as it involves reconfiguration of an existing line and addition of equipments in existing substation.

7.3 Name of the scheme: Transmission system for controlling High loading of Nellore – Nellore PS 400 kV (Quad) D/c line

7.3.1 CEA stated that the scheme to address the high loading on 400kV Nellore PS – Nellore PG line and high short circuit level at Nellore PG has already been agreed in the 42nd Standing Committee on Power System Planning in Southern Region held on 27/04/2018. The following scope of works has already been recommended to be implemented through RTM by POWERGRID in the 2nd NCT meeting held on 04.12.2018.

Sl. No.	Scope of the Transmission Scheme	Estimated Cost (Rs.) Cr.
1	Bypassing of Nellore PS – Nellore PG 400kV D/c (Quad)	1.00

I/6436/2019line & Nellore PG – Thiruvalam 400kV D/c (quad) line at Nellore PG to form Nellore PS – Thiruvalam 400kV D/c		line & Nellore PG – Thiruvalam 400kV D/c (quad) line at Nellore PG to form Nellore PS – Thiruvalam 400kV D/c	
		(Quad) direct line	
	2	Conversion of 2x50 MVAR fixed line reactors at Nellore PG on Nellore PG – Thiruvalam 400kV D/c (Quad) line as bus reactor at Nellore PG 400kV sub-station	

7.3.2 Subsequently, in the 2nd SRSCT meeting held on 10.06.2019, it has been agreed to shift the 125 MVAR and 80 MVAR line reactors at Nellore (PG) on Nellore PS-Nellore(PG) 400 kV D/c line with suitable arrangement on Nellore(PG) – Sriperumbudur 400 kV D/c line (189 km) and bypass Nellore PS – Nellore 400 kV D/c (quad) line and Nellore – Thiruvalam 400 kV D/c (quad) line at Nellore (PG) for making Nellore PS – Thiruvalam 400kV D/c (quad) line.

Sl	Scope of the Transmission Scheme	Capacity	Estimated
no		/ckm	Cost (Rs.
			Cr.)
1	 a) Shifting of 125 MVAR and 80 MVAR line reactors at Nellore (PG) on Nellore PS-Nellore(PG) 400kV D/c line with suitable arrangement on Nellore(PG) – Sriperumbudur 400kV D/c line. b) Bypassing Nellore PS – Nellore 400 kV D/c (quad) line and Nellore – Thiruvalam 400kV D/c (quad) line at Nellore (PG) for making Nellore PS – Thiruvalam 400kV 		10-12
	D/c (quad) line		

7.3.3 NCT recommended the implementation of "Shifting of 125 MVAR and 80 MVAR line reactors at Nellore (PG) on Nellore PS-Nellore(PG) 400kV D/c line with suitable arrangement on Nellore(PG) – Sriperumbudur 400kV D/c line" through RTM as it involves reconfiguration of equipments in existing substation.

8. New Inter-State Transmission Schemes in North Eastern Region

8.1 Name of the scheme: North Eastern Region Strengthening Scheme-X (NERSS-X)

8.1.1 The scheme was agreed in the 1st meeting of NERSCT held on 29th Nov 2018 at Guwahati as an ISTS scheme.

Sl. No.	Scope of the Transmission Scheme	Capacity /km	Cost
1	Roing (POWERGRID) – Chapakhowa (Assam) 132kV D/c line	40 kms	24
2	132kV line bays at Roing (POWERGRID) S/s	132 kV line bays - 2	6
3	132kV line bays at Chapakhowa (Assam)	132 kV line bays - 2	6
		Total	36

8.1.2 NCT recommended the implementation of the above scheme through RTM under compressed time schedule.

<u>Annexure-I</u>

List of Participants of the 4th meeting of National Committee on Transmission (NCT) held on 31.07.2019 at CEA, New Delhi

S.N	Nama (S/Shui)	Designation	Mh Na	Email
0.	Name (5/5nri)	Designation	MD. NO.	Eman
1				
1	PS. Mnaske	Chairperson – in chair		
2	Somit Das Gupta	Member (E&C)	007(01702	
3	Goutam Roy	Chief Engineer	83/681/93	<u>Goutamroy./15@gmail.co</u> m
	Awdhesh Kr		986866408	
4	Yadav	Director (PSPA-I)	7	awd.cea@gmail.com
			981050220	
3	Manjari Chaturvedi	Director (PSPA-I)	9	Manjari.cea@gmail.com
6			986892956	
	B.S. Bairwa	Director (PSPA-II)	9	Bs.birwa@nic.in
7			880064144	
	U.M. Rao	Dy. Director (PSPA-II)	4	<u>umrao(<i>a</i>)nic.in</u>
8	Driver Srivestave	Aget Director(DCDA I)	9/1/0504/	nrivem and amail and
	Priyani Srivastava	Asst. Director(PSPA-I)	3	priyam.cea(<i>w</i> ,gman.com
9	Vikas Sachan	Asst Director($PSPA_{-}I$)	0	vikas cea@gmail.com
	v ikus Saciiali		971781834	
10	Nitin Deswal	Asst Director(PSPA-I)	9	nitindeswal14@gmail.com
	Kanhaiya Singh		833495150	kanhajyasinghk@gmail.co
	Kushwaha	Asst. Director (PSPA-I)	0	m
10		Asst. Director (PSPA-	837507015	
12	Kanchan Chauhan	II)	0	Kanchan.cea@gov.in
	TECH. EXPERT			
13			987317444	Prabhakar.s@rediffmail.co
15	Prabhakar Singh	Tech. Expert	8	<u>m</u>
14			981824352	
	P.K. Pahwa	Tech. Expert	4	Pkpahwa2000@yahoo.com
	CTU			
1.5	Subir Sen	COO (CTU)	965029318	subir@powergridindia.com
15			5	
16	Ashok Pal	CGM (CTU-Plg.)	99103/810	ashok@powergridindia.com
10			997139912	anilsebra@powergridindia.c
17	Anil Kumar. Meena	DGM (CTU-Plg.)	0	om
17	NITI AAVOG			
	Manoi Kumar		997113121	
18	Upadhvav	Dv. Advisor	8	mk.upadhvav@nic.in
	PFCCL	J		
			921222512	
19	Ina Gupta	Manager	5	inasethi@pfcindia.com
	•	-	997186909	Nirmala_meena@pfcindia.c
20	Nirmala Meena	Dy. Manager	1	om
	RECTPCL			
21	Pankaj Verma	Deputy General	991033566	vrpankaj@yahoo.com

I/6436/201	9		Manager	8	
				989112856	
	22	Ankit Kumar	Dy. Manager	9	ankitkumar.1@gmail.com

Status of Transmission Projects through TBCB as on 31.07.2019 (RECTPCL)

Sl.	Transmission Scheme	Status
no.		
1	Western Region Strengthening Scheme	• RFQ issued on 12.01.2019, 8 bidders
	– 21 (WRSS-21) Part-A - Transmission	shortlisted to participate in RFP
	System Strengthening for relieving over	• RfP issued on 13.03.2019, 5 bidders
	loadings observed in Gujarat Intra-State	participated in RFP stage
	System due to RE Injections in Bhuj PS	• Adani Transmission Limited emerged as L1
		bidder with levelised tariff of Rs. 951.29
		Million
		• LOI issued on 31.07.2019.
		• Regulatory Approval pending from CERC.
		SPV can be transferred to selected bidder only
		after regulatory approval.
		• ISA yet to be signed by 2 LIICs i.e M/s
2	Transmission System associated with	• PEO issued on 12 01 2010 8 hidders
	RE generations at Bhui–II Dwarka &	shortlisted to participate in REP
	Lakadia	• RfP issued on 13.03.2010
		• No LTTCs finalized till data due to which
		last date of RfP hid submission extended to
		nast date of Kir bid submission excilided to
		Regulatory Approval pending from CERC
3	Jam khambaliya Pooling Station and	REQ issued on 12 01 2019 8 bidders
	Interconnection of Jam khambaliya	shortlisted to participate in RFP
	Pooling Station for providing	• RfP issued on 13.03.2019.
	connectivity to RE Projects (1500 MW)	• No LTTCs finalized till date due to which
	in Dwarka (Gujarat) and Installation of	last date of RfP bid submission extended to
	400/220 Kv ICT along with associated	05.08.2019
	bays at M/s CGPL Switchyard	• Regulatory Approval pending from CERC.
		• Approval of Section 68 of Electricity Act 2003
		is pending.
		Revised COD awaited
4	Construction of Ajmer (PG)-Phagi 765	• RFQ issued on 12.01.2019, 8 bidders
	kV D/C line along with associated bays	shortlisted to participate in RFP
	for Rajasthan SEZ	• RfP issued on 13.03.2019.
		• Last date of RfP bid submission extended to
		08.08.2019.
		• Regulatory Approval pending from CERC.
		• Technical clarification pending from RVPN
		• Decision on spare reactor pending
		Revised COD awaited
5	Transmission system associated with	• RFQ issued on 12.01.2019, 8 bidders
	LIA application from Rajasthan SEZ	shortlisted to participate in RFP

I/6436/201	9 SI.	Transmission Scheme	Status
	no.		
		(Part -C)	• RfP issued on 13.03.2019, 3 bidders
			participated in RFP stage.
			• PGCIL emerged as L1 bidder with levelised
			tariff of Rs. 1220.42 Million.
			• LOI issued on 31.07.2019.
			• Regulatory Approval pending from CERC.
			SPV can be transferred to selected bidder
			only after regulatory approval.
	6	400 kV Udupi (UPCL) – Kasargode	• RFQ issued on 15.09.2018, 9 bidders
		TBCB project	shortlisted to participate in RFP
			• RfP issued on 31.12.2018, 4 bidders
			participated in RFP.
			• Sterlite Grid 14 Ltd emerged as L1 bidder
			with levelised tariff of Rs. 847.44 million.
			• LOI issued on 31.07.2019.

194

I/6436/2019 ransmission Projects awarded through Tariff Based Competitive Bidding Route to PFC Consulting Limited

- S. Present Status as on 31.07.2019 Name of No. **Transmission Project** Connectivity 1. Bid Process was kept on Hold. 1. System for Lanco Vidarbha 2. Empowered Committee in its 37th Meeting held on 20.09.2017 Thermal Power Pvt. decided that the bidding process for the scheme may be taken up Ltd. (LVTPPL) and after resolution of financial issue and after ascertaining the Inter State progress of the project. Transmission system strengthening in Chhatarpur area in Madhya Pradesh 2. Western Region 1. RfQ notification published on 14.08.2018 Strengthening 2. Seven bidders were shortlisted at RfQ Stage on October 26, Scheme- XIX (WRSS-2018 XIX) and North 3. RfP documents issued on 13.11.2018. Eastern Region Strengthening 4. Out of 6 bidders purchased RfP document, Two (2) bidders Scheme- IX (NERSSsubmitted RfP bids on 27.05.2019. IX) RfP (Price Bid) opened on 20.06.2019; 5. E-reverse bidding held on 21.06.2019; 6. BEC in its meeting held on 10.07.2019 for evaluation of 7. financial Bids opined that the Levelised Transmission Charges discovered through the bid process are 45.2% higher than the Levelised Tariff worked out as per CERC norms; Further, BEC advised BPC to consult the matter with Cost 8. Committee (to review the cost estimates if required) and CEA in order to assess the reasonability of the discovered price for further necessary action. 3. WRSS-21 1. RfQ notification published on 17.01.2019. (Part-B) Transmission System 2. RfQ opened on 18.02.2019. strengthening for 3. Eight (8) bidders shortlisted at RfQ stage. relieving over loadings observed in Gujarat 4. RfP documents issued on 18.03.2019. Intra-state system due 5. Three (3) bidders submitted RfP bids on 25.06.2019. to RE injections in Bhuj PS RfP (Price Bid) opened on 15.07.2019; 6. 7. E-reverse bidding held on 16.07.2019; 8. LoI issued to the successful bidder M/s. Sterlite Grid 18 Ltd on 31.07.2019. 9. SPV will be transferred after Regulatory Approval. 4. RfQ notification published on 17.01.2019. Transmission System 1. providing for 2. RfQ opened on 18.02.2019. connectivity to RE Bhui-II 3. Nine (9) bidders shortlisted at RfQ stage. projects at (2000MW) in Gujarat 4. RfP documents issued on 18.03.2019.
- 1. Projects for which bidding process is on-going are as under:-

I/6436/2019S.	Name of	Present Status as on 31.07.2019
No	Transmission Project	
		5. Three (3) bidders submitted RfP bids on 02.07.2019.
		6. RfP (Price Bid) opened on 16.07.2019;
		7. E-reverse bidding held on 17.07.2019;
		8. LoI issued to the successful bidder M/s. PGCIL on 31.07.2019.
		9. SPV will be transferred after Regulatory Approval.
5.	Transmission system associated with LTA applications from Rajasthan SEZ Part-B	1. RfQ notification published on 17.01.2019
		2. RfQ opened on 19.02.2019.
		3. Nine (9) bidders shortlisted at RfQ stage.
		4. RfP documents issued on 03.06.2019.
		5. RfP bid submission scheduled on 02.08.2019 further extended to 19.08.2019.
6.	Transmission system associated with LTA applications from Rajasthan SEZ Part-D	1. RfQ notification published on 17.01.2019;
		2. RfQ opened on 19.02.2019;
		3. Nine (9) bidders shortlisted at RfQ stage;
		4. RfP documents issued on 18.03.2019;
		5. Six (6) bidders submitted RfP bids on 25.06.2019;
		6. RfP (Price Bid) opened on 17.07.2019;
		7. E-reverse bidding held on 18.07.2019;
		8. LoI issued to the successful bidder M/s. Adani transmission Limited on 31.07.2019.
		9. SPV will be transferred after Regulatory Approval.