

Failure of Towers based on the Experiences of CPRI, Bangalore

Dr. M.Selvaraj

Joint Director , In-charge -Tower Testing Station Central Power Research Institute, Bangalore E-mail : msraj@cpri.in

Transmission line Failures

Failure Definition : As per IEC 60812 : 2008

"Termination of the ability of an item to perform a required function"

Specific to transmission line is described as *"State of a structure. component or element whose purpose is terminated i.e, in which a component has failed by excessive deformation, loss of stability, overturning, collapse, rupture, buckling etc."*

Failure Modes :

- a. Electrical : Earthing, Lightning, Insulation & Transmission
- b. Structural : Hardware (Conductor/Earth wire/attachments), Connections (Bolts/Foundation interface/Welding), Foundation, Superstructure

Typical Causes of Failures

Transmission line towers : One of the few products tested in life size (full scale) before being mass produced. Still the inadequacies in design and materials attributed to failures.

Causes of Failures :

- Overloading
- Sabotage
- Theft of tower members
- Extreme weather conditions High intensity wind phenomenon
- Optimized tower design by adopting staggered pattern (dissimilar panel arrangement for transverse and longitudinal faces)
- Triangulation is not complete in some areas (body plans, cross arm elevation and plan)
- Members and plates are not properly detailed
- Improper slenderness ratio and hence error in strength calculation

Performance of test towers past 5 years at CPRI

Tower Type	Total Numbers	No. of Failed Towers	%age of Failed Towers
66 kV	11	01	09
132 kV	70	10	14
220 kV	40	14	35
400 kV	25	08	32
765 kV	09	03	33
Total	155	36	23

Tower Type	Total Numbers	No. of Failed Towers	%age of Failed Towers	
132 kV	12	1	08	Commony of Follod
220 kV	04	3	75	Summary of Falled
330 kV	01	1	100	
400 kV	10	5	50	
765 kV	01	0	Nil	
Total	28	10	36	

Rating	HEIGHT	FAILED AT	DESCRIPTION
400kV	56.8M	90%	Security condition
220kV	42.26M	95%	Security condition
220kV	44.56M	95%	Security condition
400kV	47.51M	90%	Reliability condition
330kV	54.85M	100%	Security condition
220kV	42.26M	90%	Security condition
400kV	56.65M	100%	Security condition
400kV	66.41M	100%	Security condition
400kV	59.71M	95%	Security condition
132kV	26.20M	95%	Security condition

Tower	Total	No. of Failed	%age of Failed	
Туре	Numbers	Towers	Towers	
66 kV	02	0	Nil	
115 kV	02	1	50	
132 kV	22	6	27	
220 kV	01	0	Nil	
230 kV	04	1	25	
330 kV	01	0	Nil	
400 kV	04	1	25	
765 kV	04	2	50	
Total	40	11	28	

Summary of Failed Towers during 2012-13

RATING	HEIGHT	FAILED AT	DESCRIPTION
132kV	34.34M	90%	Reliability condition
132kV	38.68M	75%	Reliability condition
132kV	40.25M	90%	Security condition
132kV	41.76M	95%	Reliability condition
132kV	29.28M	100%	Dead End condition
132kV	35.65M	90%	Security condition
765kV	63.75M	95%	Security condition
132kV	37.35M	95%	Reliability condition
115kV	45.57M	95%	Safety broken condition
765kV	59.86M	75%	Safety broken condition
230kV	48.37M	90%	Security condition
400kV	58 25M	95%	Reliability condition

Tower Type	Total Numbers	No. of Failed Towers	%age of Failed Towers
66 kV	01	0	Nil
110/115 kV	03	1	33
132 kV	10	2	20
138 kV	01	1	100
161 kV	01	0	Nil
220 kV	06	0	Nil
230 kV	01	0	Nil
330 kV	04	0	Nil
400 kV	04	0	Nil
765 kV	04	1	25
Total	35	05	14

Summary of Failed Towers during 2013-14

RATING	HEIGHT	FAILED AT	DESCRIPTION
765kV	62.07M	100%	Security condition
132kV	26.76M	75%	Reliability condition
115kV	49.93M	90%	Security condition
132kV	40.26M	90%	Reliability condition
138kV	42.85M	90%	Security condition

Tower	Total	No. of Failed	%age of Failed
Туре	Numbers	Towers	Towers
33 kV	04	0	Nil
66 kV	04	0	Nil
90 kV	04	0	Nil
132 kV	10	0	Nil
220 kV	17	5	29
230 kV	02	0	Nil
400 kV	04	0	Nil
Total	48	05	10

Summary of Failed Towers during 2015-16

RATING	HEIGHT	FAILED AT	DESCRIPTION
220kV	64.55M	90%	Reliability condition
220kV	64.55M	95%	Reliability condition
220kV	67.82M	100%	Security condition
220kV	64.32M	75%	Reliability condition
220kV	64.32M	95%	Reliability condition

Test Towers Failed During the Year 2014-15

Tower before Test

230 kV D/C Suspension tower

Failed at 95 % loads

Tower during test

220 kV D/C Tension tower

Failed at 95 % loads

220 kV D/C Tension tower

Tower during test

Failed during waiting period at 100 % loads

Tower during test

Failed during waiting period at 100 % loads

220 kV D/C Tension tower

Tower during test

66 kV M/C Tension tower

Failed during waiting period at 100 % loads

220 kV D/C Tension tower

Failed during 75 % to 90 %

230 kV D/C Tension tower

Failed during 95 % to 100 %

330 kV D/C Tension tower

Failed at 95 % loads

Tower during test

400 kV D/C Tension tower

Failed at 95 % loads

Whole Tower Collapsed during Test

			%age of Failed
Tower Type	Total Numbers	No. of Failed Towers	Towers
33 kV	03	0	Nil
66 kV	04	1	25
115 kV	02	0	Nil
132 kV	16	1	06
161 kV	03	0	Nil
220 kV	12	4	33
230 kV	09	2	22
330 kV	03	1	33
400 kV	03	2	67
Total	60	11	18

Summary of Failed Towers during 2014-15

S. No.	Rating	Total Height (m)	Nature of Failure	Loading Condition	%age of Load
1	230 kV	63.09	Whole Tower Collapsed	Normal Condition (RC)	90%
2	220 kV	50.57	Bracing Buckled	Anti-Cascading Condition	75%
3	220 kV	51.07	Whole Tower Collapsed	Normal Condition(RC)	100%
4	220 kV	39.60	Bracing Buckled	Broken Wire Condition (SC)	100%
5	66 kV	32.05	Redundant Buckled	Broken Wire Condition (SC)	100%
6	220 kV	55.54	Bolt Sheared	Broken Wire Condition (SC)	75%
7	230 kV	67.30	Whole Tower Collapsed	Normal Condition(RC)	95%
8	330 kV	44.03	Leg Buckled	Broken Wire Condition (SC)	100%
9	400 kV	58.73	Bolt Sheared	Normal Condition(RC)	95%
10	132 kV	25.15	Bolt Sheared	Normal Condition(RC)	95%
11	400 kV	45.45	Bolt Sheared	Broken Wire Condition (SC)	100%

Conclusions of Failed Towers during 2014-15

- Maximum percentage of failed towers are 400 kV : 67 %
- Failure rate increases when voltage rating increases.
- Out of 11 failed towers, 5 towers failed in Reliability condition 5 towers failed in Security condition, 1 tower failed in Anti – cascading condition
- Out of 11 failed towers 3 towers collapsed under Reliability condition, the failures under security condition is not major
- Maximum towers failed after reaching 90 % loads.
- Many times bolts were responsible for tower failures.

SPECIAL TOWERS/POLES TESTED

765 kV S/C Power Grid

154 kV D/C Steel pole Korea 220/132 kV M/C Steel pole, MPPTCL Jabalpur First time in India

SPECIAL TOWERS/POLES TESTED

275/132 kV M/C Pole

220 kV D/C Pole

Failure Investigation / Analysis of **765** kV S/C Gaya- Fathepur Transmission line (Horizontal Delta Wind Zone - 4)

Failure Analysis of 765 kV S/C "A" type tower (Strengthening measures suggested)

