NEDO Project Formation Research on High-efficiency CCT Joint Feasibility Study Replacement of Badarpur Thermal Power Station to the latest USC with Comprehensive Environmental Measures

Part 1 – Results of Feasibility Study

June 14, 2016 Scope Complex, NTPC Limited

Study Team JPOWER, Kyushu Electric Power, JCOAL

Kyushu Electric Power Co., Inc.

Contents

- 1. Basic Plan
 - A) Design Parameters
 - B) Environmental Regulation
 - C) Plot Plan D) Boiler E) Turbine and Cooling Tower
 - F) Flue Gas Treatment G) CHP H) Ash Handling System
 - I) Electrical System J) C&I System
 - K) O&M Plan L) Construction Schedule
- 2. Environmental Analysis
- 3. Study on CO2 Emission Reduction
- 4. Estimated Improvement of Emissions
- 5. Indicative EPC Cost
- 6. Fuel Supply Plan
- 7. Utilization of Discharged Ash

A) Design Parameters

Generator Output: 2 x 660MW

Boiler Specification

- Fuel Type: Domestic Coal
- Design GCV: 13,500~19,000 kJ/kg
- Start-up Fuel: Light Diesel Oil only
- Number of Mills: 8
- Minimum Turndown: 30% (of BMCR)

Steam Condition at Steam Turbine Inlet

- Main Steam Pressure :
- Main Steam Temperature :
- Reheat Steam Temperature :

26.48 MPa(a)

- 600 degree C
- 600 degree C

B) Environmental Regulation

As per Environmental (Protection) Act 1986 revised on 7/12/2015

- Water Consumption
- Flue Gas SPM Density

 $: < 2.5 \text{ m}^3/\text{MWh}$

(Zero Effluent Discharge Mandatory)

- $: < 30 \text{ mg/Nm}^3$
- Flue Gas SO₂ Density* $: < 100 \text{ mg/Nm}^3$ (approx. 35ppm)
- Flue Gas NOx Density* $: < 100 \text{ mg/Nm}^3$ (approx. 49ppm)
- Flue Gas Mercury Density*: < 0.03 mg/Nm³ (approx. 3 ppb) *each density limit as on 6% O2 conversion

Other requirements

• Stack Height : 150 m (based on existing limit)

D) Boiler – Steam Generator

 Divide Combustion Flame into Concentrate and Weak Flames

Air PreheatersBMCR: 1,970.432 t/h
Primary Fuel: Coal
Start-up Fuel: LDO only
MST Control: FW-fuel rate & 2-stg spray
RST Control : Gas damper & spray
Furnace: Vertical rifle tube structure
Burner layout: Corner (tangential) firing
Burner type : Low NOx Burner
House Load Op.: supported

USC Variable-pressure One-through Boiler (radiation reheat outdoor)

E) Turbine and Cooling Tower

Feature

New Turbine will be provided with

- \rightarrow 1 × HPT, 1 × IPT, 2 × LPTs configuration
- Advanced flow pattern nozzles and blades
- Long last stage blade
- Leakage Reduction and Control

Feature

New Cooling system will be provided with

- Induced draft cooling tower
- Back to back, double row configuration
- Clarified cooling water

Feature

New Plant water system will be designed to meet the new regulation of water consumption less than "2.5m3/MWh" and "Zero waste water discharged"

*The word "Waste water" does not contain rainwater.

F) Flue Gas Treatment (GGH)

Non-Leak GGH with LTE (with Wet ESP)

Non-Leak GGH with LLTE (without WESP)

* SO₃ concentration in gaseous phase

	LLTE	LTE
ESP	Lower Dust Electric Resistance High Efficiency / Smaller ESP	 Higher Dust Electric Resistance Bigger ESP Outlet Dust should be kept 100-200 mg/Nm³ (due to SO₃)
FGD	 No limit to inlet dust conc. Outlet dust can be 10 mg/Nm3 	 Inlet dust to be 100-200 mg/Nm³
GGH	 No corrosion potential due to SO₃ Less corrosion potential to down stream equipment 	Dust deposition / plugging

F) Flue Gas Treatment (DeNOx System)

F) Flue Gas Treatment (DeSOx System)

DeSOx System

DeSOx Inlet Gas Flow: 2,044,000 m3N/h

Inlet NOx : 611 ppmvd@6%O2

Outlet NOx : 35 ppmvd@6%O2

SOx Removal: 94.3 %

G) CHP (1/3)

Unloading/Receiving Conveyors

- Receiving Conveyor two (2) lines x 100 % capacity
- Conveyor capacity: 1,850 t/h (1,800 mm, 2m/s)
- Tandem Wagon Tripper two (2) lines x 100% capacity

Coal Storage Yard

- Number of piles 4 piles (45 m x 500 m x 4 piles)
- Coal staking height : 10 m
- Indoor type (shed)
- Coal storage capacity: 507,680 tons (29 days@100%PLF)
- Stacker/Reclaimer 1,850 tons x 2 numbers

Discharging/Bunkering Conveyor

- Discharging Conveyor: two (2) lines x 100% capacity
- Conveyor capacity: 1,850 t/h (1,800 mm, 2m/s)
- > Coal bunkering by five (5) numbers of Plow Scrapers x 2 lines

Bypass system (Direct bunkering system)

 Direct bunkering from tandem wagon tripper to Bunkers (1,850 t/h x 2 lines)

DESCRIPTION

MBOL DESCRIPTION

2080

Ш

G) CHP (3/3)

H) Ash Handling System (1/3)

H) Ash Handling System (2/3)

Fly ash transportation system

Fly ash (EP+AH) by Vacuum Compressors (3 operation + 1 standby)

H) Ash Handling System (3/3)

Fly ash silo & Slurry ash disposal System

- Fly ash silo (RCC type) x 2 Silos (capacity: 1,200 MT/24 hrs x 2)
- Silo fluidizing blowers (2 operation + 1 standby)
- High Concentration Slurry Pumps: two (2) pumps x 100% capacity

I) Electrical System

J) C&I System

Installed DCS each Unit (Total 3 units incl. common.)

System Description

TSI: Turbine Supervisory Instrumentation

K) O&M Plan

Operation

- Operation for new plant will be highly automated.
- > Need to consider the difference of control method between drum boiler and once through boiler.
- Requirement for the quality of feed water treatment will become higher for once through boiler. (practice in Japan ; conductivity < 20 μS/m, SiO2 < 20 ppb)</p>

Maintenance Plan – Inspection in USC plant

Inspection Class	Duration	Frequency	Remark
Class A	56 days	Every 4 years	Overhaul (Boiler and Turbine) removing turbine rotor every 8 years
Class B	42 days	Every 2 years	Overhaul (Boiler)
Class C	14 days	Every year	Visual Inspection

Organization – Number of employees in USC plant

	Badarpur TPS (for reference)	USC Plant in Japan
Operation	(Main Plant) 65 + local operators	(Main Plant) 40 + Fuel Gas Desulfurization (FGD) plant operators 10
Maintenance	Over 100 + contractor	30 + contractor
Others	EEMG, MPD, FM, Chem., Civil, R&M	18 + contractor

L) Construction Schedule (indicative)

2. Environmental Analysis (1/5)

Project site is selected inside Delhi for new power plant with 2 x 660MW USC (ultra super critical) coal fired units as shown in below study area base map. Also, actual air quality value surrounding area (at monitoring location) is summarized in the table.

	(Value in µg/m³)			/m³)
Sampling Location		PM10	SO2	NOx
JAITPUR	Minimum	56	8.1	11.5
(AAQ1)	Maximum	305	13.5	32.1
	Average	122.6	9.8	15.7
MITHAPUR	Minimum	61	8.2	12.2
(AAQ2)	Maximum	314	13.8	32.4
	Average	135	10.2	16.3
TUGHLAKABAD	Minimum	58	8.2	12.4
RAILWAY COLONY	Maximum	327	14.7	34.9
(AAQ3)	Average	127.5	10.4	16.5
LAKADPUR	Minimum	60	8.4	12.5
(AAQ4)	Maximum	324	14.5	34.7
	Average	127.6	10.6	16.7

2. Environmental Analysis (2/5)

Air pollution from newly installed coal fired thermal power plant (2 x 660MW) is shown bellow simulated by Gaussian plume model (given by USEPA ISCST3, 1995).

Input data for Emission details of Stack

Parameter	Unit	Value
Capacity	MW	2 x 660
Number of Stacks	Nos.	1 (Twin flue)
Physical Stack height	m	150
Internal diameter of stack at top	m	6
Exit velocity of the flue gas	m/s	23.4
Temperature of the flue gas	⁰ C	90
Mass flow rate	Nm³/hr	2,260,000
Emission limit for NO _x	mg/Nm ³	100
Emission limit for SO ₂	mg/Nm ³	100
Emission limit for PM ₁₀	mg/Nm ³	30

2. Environmental Analysis (3/5)

Predicted ground level concentration of NOx ($\mu g/m^3$) is shown in below Figures.

2. Environmental Analysis (4/5)

Predicted ground level concentration of PM_{10} (µg/m³) is shown in below Figures.

Figure 1.20: Predicted Ground Level Concentration of PM10 (8 hour average)

2. Environmental Analysis (5/5)

Predicted ground level concentration of SO_2 ($\mu g/m^3$) is shown in below Figures.

3. Study on CO2 Emission Reduction (1/2)

Calculation Method

	_	
Performance of Benchmark Technology	 > Using emission factor of high efficient coal fired power plant (Super Critical) as a benchmark 	Compared to
Grid Emission Factor	> "CO2 Baseline Database for the Indian Power Sector" issued by Ministry of Power can be referred for setting grid emission factor	Overall India
PAT (Perform, Achieve and Trade)	 Setting emission factor by referring to the energy consumption reduction target in PAT 	Compared to
Actual Emission Factor	 Setting emission factor by using historical operation data (3 years) of the power plant 	

3. Study on CO2 Emission Reduction (2/2)

Study of the CO2 emission reduction effect

Options for Baseline	A. Baseline CO2 Emissions (tCO2/y)	B. Project CO2 Emissions (tCO2/y)	(A-B) CO2 Emission Reduction (tCO2/y)	(A-B/A) CO2 Emission Reduction Rate (%)
1) Performance criteria (SC)	8,549,000 (0.88)	7 701 000 (0 702)	848,000	9.9
2) Grid Emission factor	9,521,000 (0.98)		1,820,000	19.1
3) PAT target value	10,201,000 (1.050)	7,701,000 (0.793)	2,500,000	24.5
4) Actual emission factor	11,085,000 (1.141)		3,384,000	30.5

Note: Figures in () show the CO2 emission factor (tCO2 / MWh)

CO2 emissions comparison of before and after the replacement

CO2 reduction effect of the replacement is $10 \sim 20\%$, compared with performance criteria(SC) or grid emission factor of over all India.

So, the replacement to the USC unit is very effective.

In case of replacement of under 210MW units, CO2 reduction effect is larger than this value.

4. Estimated Improvement of Emissions (1/2)

Environmental Operating Data of Badarupur Power Station

Comparison of Environmental Data of before and after of Replacement

4. Estimated Improvement of Emissions (2/2)

Comparison of Environmental Data of before and after of Replacement

	Before Replacement	After Replacement
Particulate Matter (PM)	654 t/h	113 t/h
Sulphur Dioxide (SO ₂)	2,242 t/h	377 t/h
Oxide of Nitrogen (NOx)	1,230 t/h	377 t/h

The replacement , although power plant output is approximately doubled , by reducing the emission concentration , impact on the environment is greatly reduced.

Comparison of Environmental Rate of before and after of Replacement

Emission concentration of Badarpur was confirmed to be a typical value in India. By following the new emission standards, PM, SO2, NOx both emissions per unit power generation amount is reduced to about 10 to 17% lead to the improvement of significant environmental value.

5. Indicative EPC Cost (tentative)

Typical Cost of 2x 660MW Coal-fired Power Plant (USC) with or without DeNox & DeSOx Systems

ltem		Turnkey EPC	Turnkey EPC w/o DeNOx & DeSOx
Boiler Island	Cr.	4,719	3,505
TG Island	Cr.	1,802	1,802
BOP	Cr.	2,869	2,869
Civil & Structural	Cr.	1,468	1,488
Total	Cr.	10,858	9,664
indicator	US\$/kW	1,233	1,115

6. Fuel Supply Plan Outline of current fuel supply in BTPS and its issues

Current Status

- Average GCV of coal supplied is around 4,000 kcal/kg.
- 25 30 % out of 4,000,000 t is supplied as washed coal to meet its ash content is below 34%.
- Fuel cost is very high, Dominant factor to push up BTPS's generation cost. Its transportation cost is main reason for high cost.

Linkage	main coal mine	FSA	grade	washery
	Kedla			
	Saunda		G9-12	
CCI	Dhori	4,000,000		
CCL	Ramgarh area			
	Giddi			\checkmark
	Bachra			\checkmark
	Sheeralpur			
ECL	J K Nagar	200,000	G6	
	Sone Bazaari			

Issues to be considered.

1. Additional coal 1,000 kTPA (2,900 x 2unit) 5,800 kTPA

2. Fuel cost

- > Possibilities for expansion of coal supply
- 1) Expansion of current linkage might be 4,800 kTPA from CCL.
- 2) Tapering linkage, *Bridge linkage, reallocation of linkage,* new linkage.
- 4) Purchase through e-auction
- 5) Imported coal
- 6) NTPC Captive mines

6. Fuel Supply Plan

Fuel supply issues and measures to be considered (1/3)

Cost breakdown

Additional cost @ CIL

Size of coal, loading method, etc.

Transportation cost

km	Rs/t
1-100	150.2
101-125	177.2
126-150	206
151-175	230.9
501-550	631.2
551-600	685.1
1001-1100	1214.3
1101-1200	1320.0
3001-3500	2902.7

Several tax are added

Final Landed cost of coal is 3-4 times of coal mine price.

Proposal for fuel supply plan

<u>1) Tapering linkage, Bridge linkage, reallocation of linkage, new linkage.</u>
 Reduction of transportation cost by restructuring coal linkage, but need negotiation by government level

2) NTPC Captive mines

Reduction of coal cost directly by supplying from NTPC captive mine.

3) Washed coal

Upgrade of G12 to G10-8 grade is worth to be considered to reduce transportation cost.

<u>4) Supply form Upgrade lignite by UBC process</u> Reduction of ash contents, transportation cost, etc., by applying UBC (Upgraded Brown Coal) technique at Rajasthan

6. Fuel Supply Plan

Fuel supply issues and measures to be considered (2/3)

> Example of cost accumulation.

Cost Components	UoM	Value	
Distance between Mine and Plant location	Km	1,000.00	
Basic Run of Mine Price	Rs./tonne	570.00	
Charges for Steam Coal	Rs./tonne	180.00	
Stowing Excise Duty	Rs./tonne	10.00	
Royalty	Rs./tonne	83.50	
FOB Price	Rs./tonne	843.50	
Sales Tax	Rs./tonne	33.74	
Ex Pithead Cost	Rs./tonne	877.24	
Surface Transportation Cost	Rs./tonne	30.00	
Ex Mine Cost	Rs./tonne	907.24	
Railway Freight	Rs./tonne	923	
Additional charges	Rs./tonne	382.73	
Total railway Freight	Rs./tonne	1306	
Landed cost of coal	Rs./tonne	2213 🗧	

4 times of mine price

6. Fuel Supply Plan

Fuel supply issues and measures to be considered (3/3)

List of NTPC Captive mine

Reduction of coal cost directly, only 1MTPA from captive mine is enough to address amount issue.

	Coal mine	State	commissioning	annual production (MTPA) Current Plan		Geological Reserve (MT)	Linked Project	
1	Pakri-Barawadhi	Jharkhand	2015-16		15.0	1,436	shortfall in Lara and Darlipalli	
2	Chatti-Bariatu	Jharkhand	2016-17		7.0	F 4 9	Barh-II (1,320MW)	
	Chatti-Bariatu South	Jharkhand	2015-16		7.0	548		
3	Kerandari	Jharkhand	2016-17		6.0	285	Tanda-II (1,320MW)	
4	Dulanga	Odisha	2015-16		7.0	196	Darlipalli-I (1,600MW)	
5	Talaipalli	Chhattisgarh	2015-16		18.0	1,267	Lara STPP (4,000MW)	
6	Banai	Chhattisgarh	2021-22		12.6	629	Barethi-I (2,640MW)	
7	Bhalumunda	Chhattisgarh	2021-22		11.0	550	Kudgi-I (2,400MW)	
8	Kudunali-Luburi	Odisha	2021-22		5.3	266	Bilhaur-I (1,320MW)	
9	Mandakini-B	Odisha			15.0	1200	Telangana STPP (4,000MW)	
10	Banhardih	Jharkhand			7.0	800	Patratu STPP (4,000MW)	
	Total (MTPA)				103.9	7177.0		

7. Utilization of Discharged Ash Outline of current ash flow in Badarpur Thermal Power Station

> Fly ash demand

Demand in NCR Delhi is high and is expected to continue another 20 years Further detail of cement demand will be recommend to obtain from cement industry statistics, etc.

Construction of Eastern peripheral road is required approx. 25,000,000 t of ash during coming 4 years.

> Ash Pond Area

Ash Pond Area is 800acres. After Replacement(Total units capacity is 1320MW), 800acres is enough. > Selling price of Fly ash Selling price depends on operation, 270 Rs in low PLF and 460 Rs in high PLF.

In case 705MW	in operatio	n							
Total discharged	120,000	t/m							
Ash Utilization rate 119			%						
Boiler			ESP			Chimney			
	20	%		80	%				
	24,000	t/m		96,000	t/m				
V			*	dry			Cement,	and Block	
Bottom ash			Fly ash	60,000	t/m	\rightarrow	Indu	stries	
				2,000	t/d in Opera	ation	Spec. Unburn		rbon in Ash
				600	t/d in Outage		Cement	ment < 5 %	
							Block	< 1	%
slurry	24,000	t/m	slurry	36,000	t/m				
			*	dry	moisture <	15%			
		82,800	t/m	\rightarrow					
IN	60,000	t/m							
OUT	82,800	t/m							
surplus	-22,800	t/m							
Actual Unburnt Carbon in Ash (%)									
FA	< 1	%							
BA	4 - 5	%							

7. Utilization of Discharged Ash Hearing from ash user side (Cement manufacture's Association)

1. Fly ash demand

Demand in NCR Delhi is high and is expected to continue another 20 years

Further detail of cement demand will be recommend to obtain from cement industry statistics, etc. Construction of Eastern peripheral road is required approx. 25,000,000 t of ash during coming 4 years.

2. Selling price of Fly ash

Selling price depends on operation, 460 Rs in low PLF and 270 Rs in high PLF.

All India Cement performance (Mt) source: CMA

1. Fly ash demand

Utilization for Cement is 40% out of 55% of total ash utilization. Cement demand is strongly depends on economy growth.

2. Selling price of Fly ash

Fly ash has been purchased from FY 2006. this is a dominant factor to push up cement cost as well as transportation cost.

3. Ash quality

Low quality of ash causing coal quality is concerned.

Thank you

Example 7 Kyushu Electric Power Co., Inc. المعادية المعادي

